Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach.
View Article and Find Full Text PDFSeveral factors can affect drug release from polylactide coglycolide (PLGA)-based formulations, including polymer and drug properties, formulation components, manufacturing processes, and environmental or conditions. To achieve optimal release profiles for specific drug delivery applications, it is crucial to understand the mechanistic processes that determine drug release from PLGA-based formulations. In the current study, we developed a mechanistic model for the drug release of PLGA-based solid implants.
View Article and Find Full Text PDFIntroduction: In virtual bioequivalence (VBE) assessments, pharmacokinetic models informed with data and verified with small clinical trials' data are used to simulate otherwise unfeasibly large trials. Simulated VBE trials are assessed in a frequentist framework as if they were real despite the unlimited number of virtual subjects they can use. This may adequately control consumer risk but imposes unnecessary risks on producers.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
September 2024
The Simcyp Simulator is a software platform widely used in the pharmaceutical industry to conduct stochastic physiologically-based pharmacokinetic (PBPK) modeling. This approach has the advantage of combining routinely generated in vitro data on drugs and drug products with knowledge of biology and physiology parameters to predict a priori potential pharmacokinetic changes in absorption, distribution, metabolism, and excretion for populations of interest. Combining such information with pharmacodynamic knowledge of drugs enables planning for potential dosage adjustment when clinical studies are feasible.
View Article and Find Full Text PDFBackground: Understanding the variability across the human population with respect to toxicodynamic responses after exposure to chemicals, such as environmental toxicants or drugs, is essential to define safety factors for risk assessment to protect the entire population. Activation of cellular stress response pathways are early adverse outcome pathway (AOP) key events of chemical-induced toxicity and would elucidate the estimation of population variability of toxicodynamic responses.
Objectives: We aimed to map the variability in cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors to aid in the quantification of toxicodynamic interindividual variability to derive safety uncertainty factors.
The most common method for establishing bioequivalence (BE) is to demonstrate similarity of concentration-time profiles in the systemic circulation, as a surrogate to the site of action. However, similarity of profiles from two formulations in the systemic circulation does not imply similarity in the gastrointestinal tract (GIT) nor local BE. We have explored the concordance of BE conclusions for a set of hypothetical formulations based on budesonide concentration profiles in various segments of gut vs.
View Article and Find Full Text PDFSimRFlow is a high-throughput physiologically based pharmacokinetic (PBPK) modelling tool which uses Certara's Simcyp® simulator. The workflow is comprised of three main modules: 1) a Data Collection module for automated curation of physicochemical (from ChEMBL and the Norman Suspect List databases) and experimental data (i.e.
View Article and Find Full Text PDFTizanidine, a centrally acting skeletal muscle relaxant, is predominantly metabolized by CYP1A2 and undergoes extensive hepatic first-pass metabolism after oral administration. As a highly extracted drug, the systemic exposure to tizanidine exhibits considerable interindividual variability and is altered substantially when coadministered with CYP1A2 inhibitors or inducers. The aim of the current study was to compare the performance of a permeability-limited multicompartment liver (PerMCL) model, which operates as an approximation of the dispersion model, and the well stirred model (WSM) for predicting tizanidine drug-drug interactions (DDIs).
View Article and Find Full Text PDFPhysiologically-based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters.
View Article and Find Full Text PDFAdverse Outcome Pathways (AOPs) are increasingly used to support the integration of in vitro data in hazard assessment for chemicals. Quantitative AOPs (qAOPs) use mathematical models to describe the relationship between key events (KEs). In this paper, data obtained in three cell lines, LHUMES, HepG2 and RPTEC/TERT1, using similar experimental protocols, was used to calibrate a qAOP of mitochondrial toxicity for two chemicals, rotenone and deguelin.
View Article and Find Full Text PDFThe workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment.
View Article and Find Full Text PDFPharmacokinetics study the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities.
View Article and Find Full Text PDFRead-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies.
View Article and Find Full Text PDFWe propose a Bayesian population modeling and virtual bioequivalence assessment approach to establishing dissolution specifications for oral dosage forms. A generalizable semi-physiologically based pharmacokinetic absorption model with six gut segments and liver, connected to a two-compartment model of systemic disposition for bupropion hydrochloride oral dosage forms was developed. Prior information on model parameters for gut physiology, bupropion physicochemical properties, and drug product properties were obtained from the literature.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2021
As model-informed drug development becomes an integral part of modern approaches to the discovery of new therapeutic entities and showing their safety and effectiveness, modalities of incorporating the paradigm into widespread practice require a revisit. Traditionally, modeling and simulation (M&S) have been performed by specialized teams who create bespoke models for each case and have reservations about letting modeling be done by the greater mass of scientists engaged in various stages of drug development. An analogy can be drawn between M&S and automobiles: typical drivers of ordinary cars use them for daily tasks, such as going from point A to B whereas specialized Formula 1 drivers using bespoke individually made cars to test the latest technologies.
View Article and Find Full Text PDFImaging of the prostate-specific membrane antigen (PSMA) has become an important tool for managing patients with recurrent prostate cancer, and one of the most frequently employed radiopharmaceuticals is [Ga]Ga-PSMA-11. Herein, we summarize the preclinical development and the clinical applications of [Ga]Ga-PSMA-11 and present side-by-side comparisons with other radiopharmaceuticals or imaging modalities, in order to assist imagers and clinicians in recommending, performing, and interpreting the results of [Ga]Ga-PSMA-11 PET scans in patients with prostate cancer.
View Article and Find Full Text PDFDetecting all asymptomatic or presymptomatic COVID-19 virus spreaders at a workplace requires daily testing of employees by RT-PCR, which is not practical. Over a two week period, 9 Europe and USA workplace locations were chosen to test employees for SARS-CoV-2 infection (841 tests) and high-frequency-touch point environmental surfaces (5,500 tests) for Coronavirus by RT-PCR. Of the 9 locations, 3 had one or more employees infected with SARS-CoV-2 during the two week study period.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
December 2020
A full Bayesian statistical treatment of complex pharmacokinetic or pharmacodynamic models, in particular in a population context, gives access to powerful inference, including on model structure. Markov Chain Monte Carlo (MCMC) samplers are typically used to estimate the joint posterior parameter distribution of interest. Among MCMC samplers, the simulated tempering algorithm (TMCMC) has a number of advantages: it can sample from sharp multi-modal posteriors; it provides insight into identifiability issues useful for model simplification; it can be used to compute accurate Bayes factors for model choice; the simulated Markov chains mix quickly and have assured convergence in certain conditions.
View Article and Find Full Text PDFThree global sensitivity analysis (GSA) methods (Morris, Sobol and extended Sobol) are applied to a minimal physiologically based PK (mPBPK) model using three model drugs given orally, namely quinidine, alprazolam, and midazolam. We investigated how correlations among input parameters affect the determination of the key parameters influencing pharmacokinetic (PK) properties of general interest, i.e.
View Article and Find Full Text PDFThe current/traditional human health risk assessment paradigm is challenged by recent scientific and technical advances, and ethical demands. The current approach is considered too resource intensive, is not always reliable, can raise issues of reproducibility, is mostly animal based and does not necessarily provide an understanding of the underlying mechanisms of toxicity. From an ethical and scientific viewpoint, a paradigm shift is required to deliver testing strategies that enable reliable, animal-free hazard and risk assessments, which are based on a mechanistic understanding of chemical toxicity and make use of exposure science and epidemiological data.
View Article and Find Full Text PDFPhysiologically-based toxicokinetic (PBTK) models are important tools for in vitro to in vivo or inter-species extrapolations in health risk assessment of foodborne and non-foodborne chemicals. Here we present a generic PBTK model implemented in the EuroMix toolbox, MCRA 9 and predict internal kinetics of nine chemicals (three endocrine disrupters, three liver steatosis inducers, and three developmental toxicants), in data-rich and data-poor conditions, when increasingly complex levels of parametrization are applied. At the first stage, only QSAR models were used to determine substance-specific parameters, then some parameter values were refined by estimates from substance-specific or high-throughput in vitro experiments.
View Article and Find Full Text PDFIn order to better explain, predict, or extrapolate to humans the developmental toxicity effects of chemicals to zebrafish (Danio rerio) embryos, we developed a physiologically-based pharmacokinetic (PBPK) model designed to predict organ concentrations of neutral or ionizable chemicals, up to 120 h post-fertilization. Chemicals' distribution is modeled in the cells, lysosomes, and mitochondria of ten organs of the embryo. The model's partition coefficients are calculated with sub-models using physicochemical properties of the chemicals of interest.
View Article and Find Full Text PDFMicrophysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system.
View Article and Find Full Text PDF