Publications by authors named "Boiarinov S"

Article Synopsis
  • Measuring deeply virtual Compton scattering (DVCS) on the neutron is essential for understanding the nucleon's structure through generalized parton distributions (GPDs).
  • Neutron targets help complement data obtained from polarized protons, particularly in determining the poorly understood GPD E, which is crucial for analyzing quark contributions to nucleon spin.
  • The experiment utilized a longitudinally polarized electron beam at Jefferson Lab and the CLAS12 detector to measure DVCS on the neutron for the first time, providing new insights into quark-flavor separation of relevant Compton form factors.
View Article and Find Full Text PDF

Deeply virtual Compton scattering (DVCS) allows one to probe generalized parton distributions describing the 3D structure of the nucleon. We report the first measurement of the DVCS beam-spin asymmetry using the CLAS12 spectrometer with a 10.2 and 10.

View Article and Find Full Text PDF

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions.

View Article and Find Full Text PDF

We report the first measurements of deep inelastic scattering spin-dependent azimuthal asymmetries in back-to-back dihadron electroproduction in the deep inelastic scattering process. In this reaction, two hadrons are produced in opposite hemispheres along the z axis in the virtual photon-target nucleon center-of-mass frame, with the first hadron produced in the current-fragmentation region and the second in the target-fragmentation region. The data were taken with longitudinally polarized electron beams of 10.

View Article and Find Full Text PDF

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets.

View Article and Find Full Text PDF

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π^{+} SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q^{2} ranging from 1-7  GeV^{2}.

View Article and Find Full Text PDF

Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering.

View Article and Find Full Text PDF

We present the first measurement of the timelike Compton scattering process, γp→p^{'}γ^{*}(γ^{*}→e^{+}e^{-}), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 View Article and Find Full Text PDF

The observation of beam spin asymmetries in two-pion production in semi-inclusive deep inelastic scattering off an unpolarized proton target is reported. The data presented here were taken in the fall of 2018 with the CLAS12 spectrometer using a 10.6 GeV longitudinally spin-polarized electron beam delivered by CEBAF at JLab.

View Article and Find Full Text PDF

The quark structure of the f_{2}(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq[over ¯]) resonance with quantum numbers J^{PC}=2^{++}. Recently, it was proposed that the f_{2}(1270) is a molecular state made from the attractive interaction of two ρ mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay ρ→π^{+}π^{-}, whereas decay to two neutral pions would likely be suppressed.

View Article and Find Full Text PDF

A first measurement of the longitudinal beam spin asymmetry A_{LU} in the semi-inclusive electroproduction of pairs of charged pions is reported. A_{LU} is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.

View Article and Find Full Text PDF

We have measured beam-spin asymmetries to extract the sinϕ moment A_{LU}^{sinϕ} from the hard exclusive e[over →]p→e^{'}nπ^{+} reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The A_{LU}^{sinϕ} moment has been measured up to 6.6  GeV^{2} in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time.

View Article and Find Full Text PDF

We measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5  (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400  MeV/c.

View Article and Find Full Text PDF

First measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200-2000 MeV. These measurements significantly increase the database on polarization observables.

View Article and Find Full Text PDF

Short-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.

View Article and Find Full Text PDF

We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized ^{4}He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles.

View Article and Find Full Text PDF

Unpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics.

View Article and Find Full Text PDF

There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector.

View Article and Find Full Text PDF

A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep→e^{'}p^{'}γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q^{2}, x_{B}, t, and ϕ, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center.

View Article and Find Full Text PDF

We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

View Article and Find Full Text PDF

We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°.

View Article and Find Full Text PDF

Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.

View Article and Find Full Text PDF

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab.

View Article and Find Full Text PDF

A search for exotic mesons in the pi;{+}pi;{+}pi;{-} system photoproduced by the charge exchange reaction gammap-->pi;{+}pi;{+}pi;{-}(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.

View Article and Find Full Text PDF

We report on the results of the first measurement of exclusive f_{0}(980) meson photoproduction on protons for E_{gamma}=3.0-3.8 GeV and -t=0.

View Article and Find Full Text PDF