Purpose: To investigate the effects of a single session of either peristaltic pulse dynamic leg compressions (PPDC) or local heat therapy (HT) after prolonged intermittent shuttle running on skeletal muscle glycogen content, muscle function, and the expression of factors involved in skeletal muscle remodeling.
Methods: Twenty-six trained individuals were randomly allocated to either a PPDC (n = 13) or a HT (n = 13) group. After completing a 90-min session of intermittent shuttle running, participants consumed 0.
Heat therapy (HT) has emerged as a potential adjunctive therapy to alleviate the symptoms of peripheral artery disease (PAD), but the mechanisms underlying the positive effects of this treatment modality remain undefined. Using a model of diet-induced obesity (DIO) and ischemia-induced muscle damage, we tested the hypothesis that HT would alter body composition, promote vascular growth and mitochondrial biogenesis, and improve skeletal muscle function. Male DIO C57Bl/6J mice underwent bilateral ligation of the femoral artery and were randomly allocated to receive HT or a control intervention for 30 min daily over 3 wk.
View Article and Find Full Text PDFThe purpose of the present study was to examine the effects of repeated exposure to local heat therapy (HT) on skeletal muscle function, myofiber morphology, capillarization, and mitochondrial content in humans. Twelve young adults (23.6 ± 4.
View Article and Find Full Text PDFLeg muscle ischemia in patients with peripheral artery disease (PAD) leads to alterations in skeletal muscle morphology and reduced leg strength. We tested the hypothesis that exposure to heat therapy (HT) would improve skeletal muscle function in a mouse model of ischemia-induced muscle damage. Male 42-wk-old C57Bl/6 mice underwent ligation of the femoral artery and were randomly assigned to receive HT (immersion in a water bath at 37°C, 39°C, or 41°C for 30 min) or a control intervention for 3 wk.
View Article and Find Full Text PDF