Publications by authors named "Bohumil Fafilek"

Achondroplasia is the most common form of human dwarfism caused by mutations in the FGFR3 receptor tyrosine kinase. Current therapy begins at 2 years of age and improves longitudinal growth but does not address the cranial malformations including midface hypoplasia and foramen magnum stenosis, which lead to significant otolaryngeal and neurologic compromise. A recent clinical trial found partial restoration of cranial defects with therapy starting at 3 months of age, but results are still inconclusive.

View Article and Find Full Text PDF
Article Synopsis
  • Activin receptor-like kinases 1-7 (ALK1-7) play a crucial role in regulating both SMAD-dependent and SMAD-independent signaling pathways, particularly in bone morphogenetic protein (BMP) signaling.
  • Current inhibitors for studying these pathways lack sufficient selectivity, making it difficult to validate cellular targets effectively.
  • The study identifies two new selective inhibitors of ALK1 and ALK2 that block the BMP pathway effectively in cells and demonstrate good in vivo profiles, with one showing high penetration into the brain, providing valuable tools for research in BMP signaling.
View Article and Find Full Text PDF

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest.

View Article and Find Full Text PDF

Luciferase reporter assays represent a simple and sensitive experimental system in cell and molecular biology to study multiple biological processes. However, the application of these assays is often limited by the costs of conventional luminometer instruments and the versatility of their use in different experimental conditions. Therefore, we aimed to develop a small, affordable luminometer allowing continuous measurement of luciferase activity, designed for inclusion into various kinds of tissue culture incubators.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a genetically heterogenous disorder most often due to heterozygosity for mutations in the type I procollagen genes, COL1A1 or COL1A2. The disorder is characterized by bone fragility leading to increased fracture incidence and long-bone deformities. Although multiple mechanisms underlie OI, endoplasmic reticulum (ER) stress as a cellular response to defective collagen trafficking is emerging as a contributor to OI pathogenesis.

View Article and Find Full Text PDF

Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3.

View Article and Find Full Text PDF

Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2.

View Article and Find Full Text PDF

Phosphoinositides (PIs) are phosphorylated derivatives of phosphatidylinositol. They act as signaling molecules linked to essential cellular mechanisms in eukaryotic cells, such as cytoskeleton organization, mitosis, polarity, migration or invasion. PIs are phosphorylated and dephosphorylated by a large number of PI kinases and PI phosphatases acting at the 5-, 4- and 3- position of the inositol ring.

View Article and Find Full Text PDF

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor.

View Article and Find Full Text PDF

Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling.

View Article and Find Full Text PDF

Many tyrosine kinase inhibitors (TKIs) have failed to reach human use due to insufficient activity in clinical trials. However, the failed TKIs may still benefit patients if their other kinase targets are identified by providing treatment focused on syndromes driven by these kinases. Here, we searched for novel targets of AZD1480, an inhibitor of JAK2 kinase that recently failed phase two cancer clinical trials due to a lack of activity.

View Article and Find Full Text PDF

In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The promoter was engineered to enhance -activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters.

View Article and Find Full Text PDF

The Wnt pathway plays a crucial role in self-renewal and differentiation of cells in the adult gut. In the present study, we revealed the functional consequences of inhibition of canonical Wnt signaling in the intestinal epithelium. The study was based on generation of a novel transgenic mouse strain enabling inducible expression of an N-terminally truncated variant of nuclear Wnt effector T cell factor 4 (TCF4).

View Article and Find Full Text PDF

Unlabelled: Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally deleted, using a Cre/loxP system, to identify genes influenced by the loss of Hic1.

View Article and Find Full Text PDF
Article Synopsis
  • * This study used transgenic mice to show that Nkd1 mRNA is mainly found in the intestines and liver, with elevated levels in tumors compared to healthy tissue.
  • * Analysis of human cancer samples confirmed that NKD1 is a strong marker for neoplastic growth and is linked to specific liver cancer subtypes associated with dysfunctional Wnt signaling.
View Article and Find Full Text PDF

Background & Aims: The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice.

View Article and Find Full Text PDF

HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located on chromosome 17p13.3, a region frequently hypermethylated or deleted in human neoplasias. In mouse, Hic1 is essential for embryonic development and exerts an antitumor role in adult animals.

View Article and Find Full Text PDF

The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands.

View Article and Find Full Text PDF

A major outcome of the canonical Wnt/beta-catenin-signalling pathway is the transcriptional activation of a specific set of target genes. A typical feature of the transcriptional response induced by Wnt signalling is the involvement of Tcf/Lef factors that function in the nucleus as the principal mediators of signalling. Vertebrate Tcf/Lef proteins perform two well-characterized functions: in association with beta-catenin they activate gene expression, and in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors.

View Article and Find Full Text PDF

The hypermethylated in cancer 1 (HIC1) gene is epigenetically inactivated in cancer, and in addition, the haploinsufficiency of HIC1 is linked to the development of human Miller-Dieker syndrome. HIC1 encodes a zinc-finger transcription factor that acts as a transcriptional repressor. Additionally, the HIC1 protein oligomerizes via the N-terminal BTB/POZ domain and forms discrete nuclear structures known as HIC1 bodies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: