Publications by authors named "Bohnenstiehl D"

Soundscape ecology is an emerging field in both terrestrial and aquatic ecosystems, and provides a powerful approach for assessing habitat quality and the ecological response of sound-producing species to natural and anthropogenic perturbations. Little is known of how underwater soundscapes respond during and after severe episodic disturbances, such as hurricanes. This study addresses the impacts of Hurricane Irma on the coral reef soundscape at two spur-and-groove fore-reef sites within the Florida Keys USA, using passive acoustic data collected before and during the storm at Western Dry Rocks (WDR) and before, during and after the storm at Eastern Sambo (ESB).

View Article and Find Full Text PDF

During May 2015, passive acoustic recorders were deployed at eight subtidal oyster reefs within Harris Creek Oyster Sanctuary in Chesapeake Bay, Maryland USA. These sites were selected to represent both restored and unrestored habitats having a range of oyster densities. Throughout the survey, the soundscape within Harris Creek was dominated by the boatwhistle calls of the oyster toadfish, Opsanus tau.

View Article and Find Full Text PDF

Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor.

View Article and Find Full Text PDF

Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, , was compared in response to three local soundscapes, with differing acoustic and habitat properties.

View Article and Find Full Text PDF

Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp.

View Article and Find Full Text PDF

There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

View Article and Find Full Text PDF

We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments.

View Article and Find Full Text PDF

Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.

View Article and Find Full Text PDF

Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles.

View Article and Find Full Text PDF

Following a planktonic dispersal period of days to months, the larvae of benthic marine organisms must locate suitable seafloor habitat in which to settle and metamorphose. For animals that are sessile or sedentary as adults, settlement onto substrates that are adequate for survival and reproduction is particularly critical, yet represents a challenge since patchily distributed settlement sites may be difficult to find along a coast or within an estuary. Recent studies have demonstrated that the underwater soundscape, the distinct sounds that emanate from habitats and contain information about their biological and physical characteristics, may serve as broad-scale environmental cue for marine larvae to find satisfactory settlement sites.

View Article and Find Full Text PDF

An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model.

View Article and Find Full Text PDF

Hydrothermal circulation at the axis of mid-ocean ridges affects the chemistry of the lithosphere and overlying ocean, supports chemosynthetic biological communities and is responsible for significant heat transfer from the lithosphere to the ocean. It is commonly thought that flow in these systems is oriented across the ridge axis, with recharge occurring along off-axis faults, but the structure and scale of hydrothermal systems are usually inferred from thermal and geochemical models constrained by the geophysical setting, rather than direct observations. The presence of microearthquakes may shed light on hydrothermal pathways by revealing zones of thermal cracking where cold sea water extracts heat from hot crustal rocks, as well as regions where magmatic and tectonic stresses create fractures that increase porosity and permeability.

View Article and Find Full Text PDF

Two-thirds of Earth's surface is formed at mid-ocean ridges, yet sea-floor spreading events are poorly understood because they occur far beneath the ocean surface. At 9 degrees 50'N on the East Pacific Rise, ocean-bottom seismometers recently recorded the microearthquake character of a mid-ocean ridge eruption, including precursory activity. A gradual ramp-up in activity rates since seismic monitoring began at this site in October 2003 suggests that eruptions may be forecast in the fast-spreading environment.

View Article and Find Full Text PDF

Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)).

View Article and Find Full Text PDF