Alterations in energy metabolism may drive fatigue in older age, but prior research primarily focused on skeletal muscle energetics without assessing other systems, and utilized self-reported measures of fatigue. We tested the association between energy metabolism in the brain and an objective measure of fatigability in the Study of Muscle, Mobility and Aging (N=119, age 76.8±4.
View Article and Find Full Text PDFVisual and visual processing deficits are implicated in freezing, falling, and cognitive impairments in Parkinson's disease (PD). In particular, contrast sensitivity deficits are common and may be related to cognitive impairment in PD. While dopaminergic deficits play a role in PD-related visual dysfunction, brain cholinergic systems also modulate many aspects of visual processing.
View Article and Find Full Text PDFJ Frailty Sarcopenia Falls
December 2024
Objective: Parkinson's patients will experience mobility disturbances with disease progression. Beneficial effects of physical therapy are short-lasting. Novel interventions are needed to maintain these benefits.
View Article and Find Full Text PDFBackground: With bipolar disorder (BD) having a lifetime prevalence of 4.4% and a significant portion of patients being chronically burdened by symptoms, there has been an increased focus on uncovering new targets for intervention in BD. One area that has shown early promise is the mitochondrial hypothesis.
View Article and Find Full Text PDFBackground: Postural instability and gait disturbances (PIGD) represent a significant cause of disability in Parkinson's disease (PD). Cholinergic system dysfunction has been implicated in falls in PD. The occurrence of falls typically results in fear of falling (FoF) that in turn may lead to poorer balance self-efficacy.
View Article and Find Full Text PDFThe cholinergic system has been implicated in postural deficits, in particular falls, in Parkinson's disease (PD). Falls and freezing of gait typically occur during dynamic and challenging balance and gait conditions, such as when initiating gait, experiencing postural perturbations, or making turns. However, the precise cholinergic neural substrate underlying dynamic postural and gait changes remains poorly understood.
View Article and Find Full Text PDFMethodological advances have facilitated extensive revision of traditional views of thalamic and cholinergic contributions to cognition and behavior. Increasing attention to the integrative capabilities of the thalamus highlights its role beyond a simple sensory relay, recognizing its complex connectivity and role in orchestrating different phases of attention. Correspondingly, modern conceptualizations position the cholinergic system as key in integrating sensory information with attention and goals.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
November 2024
Background: Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions.
View Article and Find Full Text PDFBackground: Postural instability and gait difficulties (PIGD) are a significant cause of mobility loss and lower quality of life in Parkinson's disease (PD). When PD progresses, patients may experience falls and freezing of gait (FoG) resulting in fear of falling and increasing sedentariness. Sedentary behavior results in sarcopenia associated with other changes in body composition, especially in older patients becoming frail.
View Article and Find Full Text PDFObjective: Cognitive decline in Parkinson disease (PD) is a disabling and highly variable non-motor feature. While cholinergic systems degeneration is linked to cognitive impairments in PD, most prior research reported cross-sectional associations. We aimed to fill this gap by investigating whether baseline regional cerebral vesicular acetylcholine transporter ligand [ F]-fluoroethoxybenzovesamicol ([ F]-FEOBV) binding predicts longitudinal cognitive changes in mild to moderate, non-demented PD subjects.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) affects more than 6 million people worldwide. Along with motor impairments, patients and animal models exhibiting PD symptoms also experience cognitive impairment, fatigue, anxiety, and depression. Currently, there are no drugs available for PD that alter the progression of the disease.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2024
Purpose: Preliminary data suggest that gait abnormalities in Parkinson disease (PD) may be associated with sympathetic cardiac denervation. No kinematic gait studies were performed to confirm this observation. We aimed to correlate spatiotemporal kinematic gait parameters with cardiac sympathetic denervation as determined by cardiac [C]HED PET in PD.
View Article and Find Full Text PDFBackground: Postural instability and gait difficulties (PIGD) are a significant cause of falls, mobility loss, and lower quality of life in Parkinson's disease (PD). The connection between PD progression and diminished strength in the lower limbs has been acknowledged. However, the identification of specific muscle groups linked to PIGD and non-PIGD motor features is still unknown.
View Article and Find Full Text PDFWhile recent advancements have been made towards a better understanding of the involvement of the prefrontal cortex (PFC) in the context of cognitive control, the exact mechanism is still not fully understood. Successful behavior requires the correct detection of goal-relevant cues and resisting irrelevant distractions. Frontal parietal networks have been implicated as important for maintaining cognitive control in the face of distraction.
View Article and Find Full Text PDFUnderstanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals.
View Article and Find Full Text PDFBackground/objective: The serotoninergic nervous system is known to play a role in the maintenance of rapid eye movement (REM) sleep. Serotoninergic projections are known to be vulnerable in synucleinopathies. To date, positron emission tomography (PET) studies using serotonin-specific tracers have not been reported in isolated REM sleep behavior disorder (iRBD).
View Article and Find Full Text PDFParkinsonism Relat Disord
July 2024
Background: Anxiety in Parkinson disease (PD) negatively impacts quality of life. While research predominantly focuses on central nervous system changes, some evidence suggests a connection between peripheral autonomic dysfunctions and PD-related anxiety. The role of the peripheral autonomic nervous system in this context may be overlooked.
View Article and Find Full Text PDFPhase-amplitude coupling (PAC) describes the interaction of two separate frequencies in which the lower frequency phase acts as a carrier frequency of the higher frequency amplitude. It is a means of carrying integrated streams of information between micro- and macroscale systems in the brain, allowing for coordinated activity of separate brain regions. A beta-gamma PAC increase over the sensorimotor cortex has been observed consistently in people with Parkinson's disease (PD).
View Article and Find Full Text PDFCholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation.
View Article and Find Full Text PDFThe International Parkinson and Movement Disorder Society (MDS) created a task force (TF) to provide a critical overview of the Parkinson's disease (PD) subtyping field and develop a guidance on future research in PD subtypes. Based on a literature review, we previously concluded that PD subtyping requires an ultimate alignment with principles of precision medicine, and consequently novel approaches were needed to describe heterogeneity at the individual patient level. In this manuscript, we present a novel purpose-driven framework for subtype research as a guidance to clinicians and researchers when proposing to develop, evaluate, or use PD subtypes.
View Article and Find Full Text PDFFlumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAR) benzodiazepine binding site that could normalize neuronal signaling and improve motor impairments in Parkinson's disease (PD). Little is known about how regional GABAR availability affects motor symptoms. We investigated the relationship between regional availability of GABAR benzodiazepine binding sites and motor impairments in PD.
View Article and Find Full Text PDFMost individuals with Parkinson's disease experience cognitive decline. Mounting evidence suggests this is partially caused by cholinergic denervation due to α-synuclein pathology in the cholinergic basal forebrain. Alpha-synuclein deposition causes inflammation, which can be measured with free water fraction, a diffusion MRI-derived metric of extracellular water.
View Article and Find Full Text PDF