Publications by authors named "Bohn E"

To promote intracellular survival and infection, Legionella spp. translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood.

View Article and Find Full Text PDF

Dystonia, typically characterized by slow repetitive involuntary movements, stiff abnormal postures, and hypertonia, is common among individuals with cerebral palsy (CP). Dystonia can interfere with activities and have considerable impact on motor function, pain/comfort, and ease of caregiving. Although pharmacological and neurosurgical approaches are used clinically in individuals with CP and dystonia that is causing interference, evidence to support these options is limited.

View Article and Find Full Text PDF

To promote intracellular survival and infection, translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood. Herein we investigated the secretion of hydrophobic TMD-effectors, of which about 80 were previously reported to be encoded by A proteomic analysis of fractionated membranes revealed that TMD-effectors are targeted to and inserted into the bacterial inner membranes of independent of the presence of a functional T4bSS.

View Article and Find Full Text PDF

Purpose: Patients undergoing lung resection are at increased risk for acute kidney injury (AKI) in the immediate postoperative period, with important consequences for longer term morbidity and mortality. Lung resection surgery has unique considerations that could increase the risk of AKI, including lung resection volume, duration of one-lung ventilation (OLV), and intraoperative fluid restriction. Yet, specific risk factor data are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Variants in the untranslated regions (UTRs) of genes can cause rare diseases, and understanding their pathogenicity is crucial for diagnosing and treating these conditions.
  • To improve prediction accuracy, researchers created a reliable dataset of pathogenic (P) and likely pathogenic (LP) variants, assessing deep learning (DL) models' ability to understand their molecular effects.
  • The study found significant differences in predictions made by DL models when analyzing P/LP variants compared to benign variants, suggesting these models can be effective tools for identifying harmful genetic changes.
View Article and Find Full Text PDF

Attitude control of fixed-wing unmanned aerial vehicles (UAVs) is a difficult control problem in part due to uncertain nonlinear dynamics, actuator constraints, and coupled longitudinal and lateral motions. Current state-of-the-art autopilots are based on linear control and are thus limited in their effectiveness and performance. Gls drl is a machine learning method to automatically discover optimal control laws through interaction with the controlled system that can handle complex nonlinear dynamics.

View Article and Find Full Text PDF

YgfB-mediated β-lactam resistance was recently identified in multi drug resistant Pseudomonas aeruginosa. We show that YgfB upregulates expression of the β-lactamase AmpC by repressing the function of the regulator of the programmed cell death pathway AlpA. In response to DNA damage, the antiterminator AlpA induces expression of the alpBCDE autolysis genes and of the peptidoglycan amidase AmpDh3.

View Article and Find Full Text PDF

The outer membrane (OM) of Gram-negative bacteria efficiently protects from harmful environmental stresses such as antibiotics, disinfectants, or dryness. The main constituents of the OM are integral OM β-barrel proteins (OMPs). In Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, and Pseudomonas aeruginosa, the insertion of OMPs depends on a sophisticated biogenesis pathway.

View Article and Find Full Text PDF

spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate effector proteins (Beps) into host cells their VirB/VirD4 type 4 secretion system (T4SS) in order to subvert host cellular functions, thereby leading to the downregulation of innate immune responses.

View Article and Find Full Text PDF

Studies of bacterial protein secretion have relied on a variety of reporters that allow the tracking of secreted proteins. However, the lack of truly quantitative and highly sensitive reporters has hindered, in particular, the investigation of the kinetics of protein secretion. In this chapter, we describe a luminescence-based assay using NanoLuc luciferase to analyse secretion and injection into host cells of type III secretion (T3S) substrates encoded on Salmonella pathogenicity island-1 (SPI-1).

View Article and Find Full Text PDF

The complex interplay of a pathogen with its virulence and fitness factors, the host's immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection.

View Article and Find Full Text PDF

Aim: To update a systematic review of evidence published up to December 2015 for pharmacological/neurosurgical interventions among individuals with cerebral palsy (CP) and dystonia.

Method: Searches were updated (January 2016 to May 2020) for oral baclofen, trihexyphenidyl, benzodiazepines, clonidine, gabapentin, levodopa, botulinum neurotoxin (BoNT), intrathecal baclofen (ITB), and deep brain stimulation (DBS), and from database inception for medical cannabis. Eligible studies included at least five individuals with CP and dystonia and reported on dystonia, goal achievement, motor function, pain/comfort, ease of caregiving, quality of life (QoL), or adverse events.

View Article and Find Full Text PDF

The elucidation of the molecular mechanisms of secretion through bacterial protein secretion systems is impeded by a shortage of assays to quantitatively assess secretion kinetics. Also the analysis of the biological role of these secretion systems as well as the identification of inhibitors targeting these systems would greatly benefit from the availability of a simple, quick and quantitative assay to monitor principle secretion and injection into host cells. Here, we present a versatile solution to this need, utilizing the small and very bright NanoLuc luciferase to assess the function of the type III secretion system encoded by Salmonella pathogenicity island 1.

View Article and Find Full Text PDF

With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal β-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem.

View Article and Find Full Text PDF

Type III secretion systems (T3SS) play a crucial role for virulence in many Gram-negative bacteria. After tight bacterial contact to host cells, the T3SS injects effector proteins into the host cells, which leads to cell invasion, tissue destruction and/or immune evasion. Over the last decade several attempts were made to characterize the host-cell interactions which precede and determine effector protein injection during infection.

View Article and Find Full Text PDF

Background: Supraglottic airway devices (SADs) are an essential second line tool during difficult airway management after failed tracheal intubation. Particularly for such challenging situations the handling of an SAD requires sufficient training. We hypothesized that the feasibility of manikin-based airway management with second generation SADs depends on the type of manikin.

View Article and Find Full Text PDF

is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for therapy are urgently required. The outer membrane composition of Gram-negative pathogens and especially of restricts the efficacy of antibiotic entry into the cell and determines virulence.

View Article and Find Full Text PDF

Mutations in the nucleotide-binding oligomerization domain protein 12 (NLRP12) cause recurrent episodes of serosal inflammation. Here we show that NLRP12 efficiently sequesters HSP90 and promotes K48-linked ubiquitination and degradation of NOD2 in response to bacterial muramyl dipeptide (MDP). This interaction is mediated by the linker-region proximal to the nucleotide-binding domain of NLRP12.

View Article and Find Full Text PDF

Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive.

View Article and Find Full Text PDF

The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier.

View Article and Find Full Text PDF

Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation.

View Article and Find Full Text PDF

Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive.

View Article and Find Full Text PDF

Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection.

View Article and Find Full Text PDF

Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis.

View Article and Find Full Text PDF

We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.

View Article and Find Full Text PDF