In this paper, we review recent advances in statistical methods for the evaluation of the heterogeneity of treatment effects (HTE), including subgroup identification and estimation of individualized treatment regimens, from randomized clinical trials and observational studies. We identify several types of approaches using the features introduced in Lipkovich et al (Stat Med 2017;36: 136-196) that distinguish the recommended principled methods from basic methods for HTE evaluation that typically rely on rules of thumb and general guidelines (the methods are often referred to as common practices). We discuss the advantages and disadvantages of various principled methods as well as common measures for evaluating their performance.
View Article and Find Full Text PDFBackground: Assessment of reliability is one of the key components of the validation process designed to demonstrate that a novel clinical measure assessed by a digital health technology tool is fit-for-purpose in clinical research, care, and decision-making. Reliability assessment contributes to characterization of the signal-to-noise ratio and measurement error and is the first indicator of potential usefulness of the proposed clinical measure.
Summary: Methodologies for reliability analyses are scattered across literature on validation of PROs, wet biomarkers, etc.
There has been much interest in the evaluation of heterogeneous treatment effects (HTE) and multiple statistical methods have emerged under the heading of personalized/precision medicine combining ideas from hypothesis testing, causal inference, and machine learning over the past 10-15 years. We discuss new ideas and approaches for evaluating HTE in randomized clinical trials and observational studies using the features introduced earlier by Lipkovich, Dmitrienko, and D'Agostino that distinguish principled methods from simplistic approaches to data-driven subgroup identification and estimating individual treatment effects and use a case study to illustrate these approaches. We identified and provided a high-level overview of several classes of modern statistical approaches for personalized/precision medicine, elucidated the underlying principles and challenges, and compared findings for a case study across different methods.
View Article and Find Full Text PDFBackground: The proliferation and increasing maturity of biometric monitoring technologies allow clinical investigators to measure the health status of trial participants in a more holistic manner, especially outside of traditional clinical settings. This includes capturing meaningful aspects of health in daily living and a more granular and objective manner compared to traditional tools in clinical settings.
Summary: Within multidisciplinary teams, statisticians and data scientists are increasingly involved in clinical trials that incorporate digital clinical measures.
The ICH E9(R1) addendum (2019) proposed principal stratification (PS) as one of five strategies for dealing with intercurrent events. Therefore, understanding the strengths, limitations, and assumptions of PS is important for the broad community of clinical trialists. Many approaches have been developed under the general framework of PS in different areas of research, including experimental and observational studies.
View Article and Find Full Text PDFBackground: Monitoring eating is central to the care of many conditions such as diabetes, eating disorders, heart diseases, and dementia. However, automatic tracking of eating in a free-living environment remains a challenge because of the lack of a mature system and large-scale, reliable training set.
Objective: This study aims to fill in this gap by an integrative engineering and machine learning effort and conducting a large-scale study in terms of monitoring hours on wearable-based eating detection.
This paper provides examples of defining estimands in real-world scenarios following ICH E9(R1) guidelines. Detailed discussions on choosing the estimands and estimators can be found in our companion papers. Three scenarios of increasing complexity are illustrated.
View Article and Find Full Text PDFThe National Research Council (NRC) Expert Panel Report on Prevention and Treatment of Missing Data in Clinical Trials highlighted the need for clearly defining objectives and estimands. That report sparked considerable discussion and literature on estimands and how to choose them. Importantly, consideration moved beyond missing data to include all postrandomization events that have implications for estimating quantities of interest (intercurrent events, aka ICEs).
View Article and Find Full Text PDFThis article focuses on 2 objectives in the analysis of efficacy in long-term extension studies of chronic diseases: (1) defining and discussing estimands of interest in such studies and (2) evaluating the performance of several multiple imputation methods that may be useful in estimating some of these estimands. Specifically, 4 estimands are defined and their clinical utility and inferential ramifications discussed. The performance of several multiple imputation methods and approaches were evaluated using simulated data.
View Article and Find Full Text PDFThe general topic of subgroup identification has attracted much attention in the clinical trial literature due to its important role in the development of tailored therapies and personalized medicine. Subgroup search methods are commonly used in late-phase clinical trials to identify subsets of the trial population with certain desirable characteristics. Post-hoc or exploratory subgroup exploration has been criticized for being extremely unreliable.
View Article and Find Full Text PDFOver the past years, significant progress has been made in developing statistically rigorous methods to implement clinically interpretable sensitivity analyses for assumptions about the missingness mechanism in clinical trials for continuous and (to a lesser extent) for binary or categorical endpoints. Studies with time-to-event outcomes have received much less attention. However, such studies can be similarly challenged with respect to the robustness and integrity of primary analysis conclusions when a substantial number of subjects withdraw from treatment prematurely prior to experiencing an event of interest.
View Article and Find Full Text PDFThe need to use rigorous, transparent, clearly interpretable, and scientifically justified methodology for preventing and dealing with missing data in clinical trials has been a focus of much attention from regulators, practitioners, and academicians over the past years. New guidelines and recommendations emphasize the importance of minimizing the amount of missing data and carefully selecting primary analysis methods on the basis of assumptions regarding the missingness mechanism suitable for the study at hand, as well as the need to stress-test the results of the primary analysis under different sets of assumptions through a range of sensitivity analyses. Some methods that could be effectively used for dealing with missing data have not yet gained widespread usage, partly because of their underlying complexity and partly because of lack of relatively easy approaches to their implementation.
View Article and Find Full Text PDF