The effects of dairy sterilization techniques (65 °C/30 min, 72 °C/15 s, 85 °C/15 s, 100 °C/5 min, and 121 °C/5 s) on the epigallocatechin-3-gallate-casein (EGCG-CS) complexes were investigated through the structural and functional characteristics in this work. Fourier transform infrared spectroscopy (FT-IR) detection showed the redshirting of the absorption peak suggested structural changes in the amide I area. Field emission scanning electron microscopy (FESEM) and viscosity measurements proved that treatments above 85 °C broke non-covalent bonds, leading to instability and low viscosity of EGCG-CS.
View Article and Find Full Text PDFPolybromo 1 (PBRM1) inactivating mutations are associated with clinical benefit from immune checkpoint inhibitor treatments in clear cell renal cell carcinoma (ccRCC). However, whether targeting PBRM1 has the potential to enhance immunotherapy efficacy in patients with wild-type PBRM1 and the upstream pathways that regulate PBRM1 protein stability remain unclear. Here, it is demonstrated that PBRM1 knockdown induced M1 macrophage polarization and infiltration, which enhanced the efficacy of anti-PD-1 immunotherapy in RCC.
View Article and Find Full Text PDF53BP1 plays an important role in DNA double-strand break (DSB) repair and this activity is negatively regulated by its interaction with Tudor interacting repair regulator (TIRR). However, how the TIRR-53BP1 repair axis is regulated in response to DNA damage remains elusive. Here, we demonstrate that TIRR is translocated to the cytoplasm and degraded upon DNA damage.
View Article and Find Full Text PDFThis study systematically explored the enhancement of mannosylerythritol lipid-A (MEL-A) on physicochemical stability, antioxidant activity, and bioavailability of bovine lactoferrin (BLF) emulsion under different pH conditions by spectroscopic techniques, molecular simulation, and simulated in vitro digestion model. The bovine lactoferrin-MEL-A (BLF-MEL-A) emulsions were prepared and characterized with the Fourier infrared, of which results showed that high concentration MEL-A (1.00 mg/mL) changed the secondary structure of pH-induced BLF and rendered an increase in β-sheet and random coil fractions.
View Article and Find Full Text PDFBackground: The E1A-associated protein p300 (p300) has emerged as a promising target for cancer therapy due to its crucial role in promoting oncogenic signaling pathways in various cancers, including prostate cancer. This need is particularly significant in prostate cancer. While androgen deprivation therapy (ADT) has demonstrated promising efficacy in prostate cancer, its long-term use can eventually lead to the development of castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC).
View Article and Find Full Text PDFWhile large-scale artificial intelligence (AI) models for protein structure prediction and design are advancing rapidly, the translation of deep learning models for practical macromolecular drug development remains limited. This investigation aims to bridge this gap by combining cutting-edge methodologies to create a novel peptide-based PROTAC drug development paradigm. Using ProteinMPNN and RFdiffusion, we identified binding peptides for androgen receptor (AR) and Von Hippel-Lindau (VHL), followed by computational modeling with Alphafold2-multimer and ZDOCK to predict spatial interrelationships.
View Article and Find Full Text PDFBackground: Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment.
View Article and Find Full Text PDFDNA replication is a vulnerable cellular process, and its deregulation leads to genomic instability. Here, we demonstrate that chromobox protein homolog 3 (CBX3) binds replication protein A 32-kDa subunit (RPA2) and regulates RPA2 retention at stalled replication forks. CBX3 is recruited to stalled replication forks by RPA2 and inhibits ring finger and WD repeat domain 3 (RFWD3)-facilitated replication restart.
View Article and Find Full Text PDFPeptide drugs offer distinct advantages in therapeutics; however, their limited stability and membrane penetration abilities hinder their widespread application. One strategy to overcome these challenges is the hydrocarbon peptide stapling technique, which addresses issues such as poor conformational stability, weak proteolytic resistance, and limited membrane permeability. Nonetheless, while peptide stapling has successfully stabilized α-helical peptides, it has shown limited applicability for most β-sheet peptide motifs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2023
Ferroptosis, an emerging form of programmed cell death, has garnered substantial attention as a potential target for cancer therapy. However, despite the potential promise, no ferroptosis-related therapies have progressed to clinical trials. Identifying disease types sensitive to ferroptosis and developing specific ferroptosis-targeting drugs are critical focal points in the field of ferroptosis-based treatment.
View Article and Find Full Text PDF53BP1 promotes nonhomologous end joining (NHEJ) over homologous recombination (HR) repair by mediating inactivation of DNA end resection. Ubiquitination plays an important role in regulating dissociation of 53BP1 from DNA double-strand breaks (DSBs). However, how this process is regulated remains poorly understood.
View Article and Find Full Text PDFBackground: The enhancer of zeste homolog 2 (EZH2) plays an important role in the tumor microenvironment (TME), and EZH2 in shaping the epigenetic landscape of CD8 T cell fate and function, with a particular emphasis on cancer. Here, high EZH2 expression always leads to less CD8 T cell infiltration. However, clear cell renal cell carcinoma (ccRCC) is reportedly a "hot" tumor, with contradictory high EZH2 expression.
View Article and Find Full Text PDFAlthough stapled peptides offer a powerful solution to overcome the susceptibility of linear peptides to proteolytic degradation and improve their ability to cross membranes, an efficient and durable disease treatment strategy has not yet been developed due to the inevitable elimination of peptide inhibitors and rapid accumulation of target proteins. Herein we developed stapled peptide-based proteolysis-targeting chimeras (SP-PROTACs), that simultaneously exhibited improved cellular uptake and proteolytic stability attributed to the stapled peptides, and efficient target protein degradation promoted by the PROTACs. Based on the PMI peptide with dual specificity for both MDM2 and MDMX, a series of SP-PROTACs were designed.
View Article and Find Full Text PDFCell Death Dis
September 2022
The mechanistic (formally "mammalian") target of rapamycin (mTOR) pathway serves as a crucial regulator of various biological processes such as cell growth and cancer progression. In bladder cancer, recent discoveries showing the cancer-promoting role of mTOR complex 1 have attracted wide attention. However, the regulation of mTOR signaling in bladder cancer is complicated and the underlying mechanism remains elusive.
View Article and Find Full Text PDFAndrogen receptor splice variant-7 (AR-V7), one of the major driving factors, is the most attractive drug target in castration-resistant prostate cancer (CRPC). Currently, no available drugs efficiently target AR-V7 in clinical practice. The DNA binding domain (DBD) is indispensable for the transcriptional activity of AR full length and AR splice variants, including AR-V7.
View Article and Find Full Text PDFThe Bcr/Abl plays a central role in Philadelphia chromosome-positive (Ph+) leukemia because of the constitutively activated Abl tyrosine kinase and its downstream pathways. Currently, the clinical treatment of imatinib-resistant patients with tyrosine kinase inhibitors is severely limited by drug resistance and adverse effects. Herein, a dual-targeting proteolysis-targeting chimera (PROTAC) protein drug, termed Bcr/Abl-R6, is designed by engrafting an MDM2/p53 inhibition peptide sequence onto the Bcr/Abl tetramerization domain.
View Article and Find Full Text PDFLentinus edodes is the second-most popular and cultivated mushroom worldwide due to its nutritional and health-promoting benefit. However, the mushroom production generates vast amounts of spent L. edodes substrate (SLS) that is generally discharged into the environment, posing a great challenge within mushroom by-product valorization.
View Article and Find Full Text PDFSoybean oil is composed of fatty acids and glycerol. The content and composition of fatty acids partly determine the quality of soybean seeds. Circular RNAs (circRNAs) are endogenous non-coding RNAs that competitively bind to microRNAs (miRNAs) through miRNA recognition elements, thereby acting as sponges to regulate the expression of target genes.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are non-coding RNAs of more than 200 nucleotides. To date, the roles of lncRNAs in soybean fatty acid synthesis have not been fully studied. Here, the low-linolenic acid mutant 'MT72' and the wild-type control 'JN18' were used as materials.
View Article and Find Full Text PDFThe type 3 secretion system (T3SS) found as cell-surface appendages of many pathogenic Gram-negative bacteria, although nonessential for bacterial survival, is an important therapeutic target for drug discovery and development aimed at inhibiting bacterial virulence without inducing antibiotic resistance. We designed a fluorescence-polarization-based assay for high-throughput screening as a mechanistically well-defined general strategy for antibiotic discovery targeting the T3SS and made a serendipitous discovery of a subset of tanshinones-natural herbal compounds in traditional Chinese medicine widely used for the treatment of cardiovascular and cerebrovascular diseases-as effective inhibitors of the biogenesis of the T3SS needle of multi-drug-resistant . By inhibiting the T3SS needle assembly and, thus, cytotoxicity and pathogenicity, selected tanshinones reduced the secretion of bacterial virulence factors toxic to macrophages , and rescued experimental animals challenged with lethal doses of in a murine model of acute pneumonia.
View Article and Find Full Text PDFThe C-type lectin receptor Clec4f has been identified as a specific surface marker for Kupffer cells, although its ortholog is absent in humans and its biological function remains elusive. Here, we report the crystal structure of a truncated mouse trimeric Clec4f. The orientation between the carbohydrate-recognition domain of Clec4f and its neck region differs from other C-type lectins, resulting in an observed distance of 45 Å between the glycan-binding sites within the Clec4f trimer.
View Article and Find Full Text PDFA major pharmacological barrier to peptide therapeutics is their susceptibility to proteolytic degradation and poor membrane permeability, which, in principle, can be overcome by nanoparticle-based delivery technologies. Proteins, by definition, are nano materials and have been clinically proven as an efficient delivery vehicle for small molecule drugs. Here we describe the design of a protein-based peptide drug carrier derived from the tetramerization domain of the chimeric oncogenic protein Bcr/Abl of chronic myeloid leukemia.
View Article and Find Full Text PDF