Co-precipitation of biopolymers into calcium carbonate crystals changes their physicochemical and biological properties. This work studies hybrid microcrystals of vaterite obtained in the presence of natural polysaccharides, as carriers for the delivery of proteins and enzymes. Hybrid microcrystals with dextran sulfate, chondroitin sulfate, heparin, fucoidan, and pectin were obtained and compared.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e.
View Article and Find Full Text PDFEpigenetics Chromatin
March 2024
Background: Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD.
Results: To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA).
Background: Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells.
View Article and Find Full Text PDFThe new cellular models based on neural cells differentiated from induced pluripotent stem cells have greatly enhanced our understanding of human nervous system development. Highly efficient protocols for the differentiation of iPSCs into different types of neural cells have allowed the creation of 2D models of many neurodegenerative diseases and nervous system development. However, the 2D culture of neurons is an imperfect model of the 3D brain tissue architecture represented by many functionally active cell types.
View Article and Find Full Text PDFThe mismatch of HLA haplotypes between donor and recipient adversely affects the outcome of tissue transplantation. TheB2Mgene knockout (B2M-KO) disrupts the HLA I heterodimer formation; therefore,B2M-KO cells have reduced immunogenicity to allogeneic CD8 T cells. Thus, theB2M-KO IPSCs and their derivatives can potentially solve a problem of the immunological compatibility in allogeneic transplantations.
View Article and Find Full Text PDFHuman pluripotent stem cells, which include embryonic stem cells and induced pluripotent cells (iPSCs), are capable of unlimited division and differentiation into all cells of the body. These cells are considered as a potential source of various types of cells for transplantations. The use of autologous iPSCs is not potentially associated with immune rejection and does not require immunosuppression required for allogeneic grafts.
View Article and Find Full Text PDFOrganoids are three-dimensional (3D) cell cultures that replicate some of the key features of morphology, spatial architecture, and functions of a particular organ. Organoids can be generated from both adult and pluripotent stem cells (PSCs), and complex organoids can also be obtained by combining different types of cells, including differentiated cells. The ability of pluripotent cells to self-organize into organotypic structures containing several cell subtypes specific for a particular organ was used for creating organoids of the brain, eye, kidney, intestine, and other organs.
View Article and Find Full Text PDF