Background: In pre-clinical animal models of Parkinson's disease (PD), vagus nerve stimulation (VNS) can rescue motor deficits and protect susceptible neuronal populations. Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a non-invasive alternative to traditional invasive cervical VNS. This is the first report summarizing the safety, feasibility, and preliminary efficacy of repeated sessions of taVNS in participants with PD.
View Article and Find Full Text PDFBackground: In the U.S., health inequities experienced by the African American community, specifically among those ages 65 and older, have been well-documented in research literature.
View Article and Find Full Text PDFBackground: Combinatory intervention such as high-frequency (50-100 Hz) excitatory cortical stimulation (ECS) given concurrently with motor rehabilitative training (RT) improves forelimb function, except in severely impaired animals after stroke. Clinical studies suggest that low-frequency (≤1 Hz) inhibitory cortical stimulation (ICS) may provide an alternative approach to enhance recovery. Currently, the molecular mediators of CS-induced behavioral effects are unknown.
View Article and Find Full Text PDFBackground: Vagus nerve stimulation (VNS) modifies brain rhythms in the locus coeruleus (LC) via the solitary nucleus. Degeneration of the LC in Parkinson's disease (PD) is an early catalyst of the spreading neurodegenerative process, suggesting that stimulating LC output with VNS has the potential to modify disease progression. We previously showed in a lesion PD model that VNS delivered twice daily reduced neuroinflammation and motor deficits, and attenuated tyrosine hydroxylase (TH)-positive cell loss.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2020
Browning of white adipose tissue (WAT) has been shown to reduce obesity and obesity-related complications, suggesting that factors that promote WAT browning may have applications in the development of therapeutic strategies for treating obesity. Here, we show that ablation of spinophilin (SPL), a ubiquitously expressed, multidomain scaffolding protein, increases metabolism and improves energy balance. Male and female SPL knockout (KO) and wild-type (WT) littermate controls were fed a chow diet or a high-fat diet (HFD).
View Article and Find Full Text PDFParkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans.
View Article and Find Full Text PDFThe pontine nucleus locus coeruleus (LC) is the primary source of noradrenergic (NE) projections to the brain and is important for working memory, attention, and cognitive flexibility. Individuals with Down syndrome (DS) develop Alzheimer's disease (AD) with high penetrance and often exhibit working memory deficits coupled with degeneration of LC-NE neurons early in the progression of AD pathology. Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools that allow targeted manipulation of discrete neuronal populations in the brain without the confounds of off-target effects.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson's disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB).
View Article and Find Full Text PDFThe symptomologies of Alzheimer's disease (AD) develop over decades suggesting modifiable lifestyle factors may contribute to disease pathogenesis. In humans, hyperinsulinemia associated with type 2 diabetes mellitus increases the risk for developing AD and both diseases share similar age-related etiologies including amyloidogenesis. Since we have demonstrated that soluble Aβ elicits glutamate release, we wanted to understand how diet-induced insulin resistance alters hippocampal glutamate dynamics, which are important for memory formation and consolidation.
View Article and Find Full Text PDFBackground And Purpose: Parkinson's disease is characterized by progressive decline in motor function due to degeneration of nigrostriatal dopaminergic neurons, as well as other deficits including cognitive impairment and behavioural abnormalities. Mitochondrial dysfunction, leading to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity and oxidative stress, is implicated in the pathophysiology of Parkinson's disease. Using the 5-HT receptor agonist LY344864, a known inducer of mitochondrial biogenesis (MB), we investigated the therapeutic efficacy of stimulating MB on dopaminergic neuron loss in a mouse model of Parkinson's disease.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic.
View Article and Find Full Text PDFUnlabelled: Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production.
View Article and Find Full Text PDFMitochondrial dysfunction has been implicated in the degeneration of dopamine (DA) neurons in Parkinson's disease (PD). In addition, animal models of PD utilizing neurotoxins, such as 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have shown that these toxins disrupt mitochondrial respiration by targeting complex I of the electron transport chain, thereby impairing DA neurons in these models. A MitoPark mouse model was created to mimic the mitochondrial dysfunction observed in the DA system of PD patients.
View Article and Find Full Text PDFIntroduction: Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid β (Aβ) peptides and phosphorylated-tau in neuronal exosomes may document preclinical AD.
View Article and Find Full Text PDFNotwithstanding recent advances, cognitive impairments are among the most difficult-to-treat symptoms in neuropsychiatric disorders. Deficits in information processing contributing to memory and sociability impairments are found across neuropsychiatric-related disorders. Previously, we have shown that mutations in the DTNBP1 gene (encoding dystrobrevin-binding protein 1 [dysbindin-1]) lead to abnormalities in synaptic glutamate release in the prefrontal cortex (PFC) and hippocampus and to cognitive deficits; glutamatergic transmission is important for cortical recurrent excitation that allows information processing in the PFC.
View Article and Find Full Text PDFGrowth hormone receptor knockout (GHR-KO) mice are long lived with improved health span, making this an excellent model system for understanding biochemical mechanisms important to cognitive reserve. The purpose of the present study was to elucidate differences in cognition and glutamatergic dynamics between aged (20- to 24-month-old) GHR-KO and littermate controls. Glutamate plays a critical role in hippocampal learning and memory and is implicated in several neurodegenerative disorders, including Alzheimer's disease.
View Article and Find Full Text PDFThe impact of short-term benzodiazepine exposure on cognition in middle-aged or older patients is a highly debated topic among anesthesiologists, critical care physicians and public media. "Western diet" (WD) consumption is linked to impaired cognition as well. The combination of benzodiazepines with substantial exposure to WD might set the stage for increased hippocampal vulnerability for benzodiazepines leading to exaggerated cognitive impairment in the postoperative period.
View Article and Find Full Text PDFBackground: As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker.
View Article and Find Full Text PDFAims: There is a need for more biologic research in autistic disorder (AD) to determine if biomarkers exist that would be useful for correlating to symptom severity and/or clinical improvement during treatment. Given the fact that AD is 4 times more common in males than females, gender differences in physiological biomarkers may be present. One potential biomarker that has begun to be studied is brain-derived neurotropic factor (BDNF), a peptide involved in the regulation of neuronal cell survival, differentiation, and plasticity, and possessing an ability to influence neurotransmitter systems by modulating gene expression.
View Article and Find Full Text PDFThe anti-Parkinsonian drug rasagiline is a selective, irreversible inhibitor of monoamine oxidase and is used in the treatment of Parkinson׳s disease (PD). Its postulated neuroprotective effects may be attributed to MAO inhibition, or to its propargylamine moiety. The major metabolite of rasagiline, aminoindan, has shown promising neuroprotective properties in vitro but there is a paucity of studies investigating in vivo effects of this compound.
View Article and Find Full Text PDFDown syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer's disease (AD).
View Article and Find Full Text PDFBackground: Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability.
Methods: We transduced NAcore astrocytes with an adeno-associated virus vector expressing hM3D designer receptor exclusively activated by a designer drug (DREADD) under control of the glial fibrillary acidic protein promoter in 62 male Sprague Dawley rats, 4 dominant-negative soluble N-ethylmaleimide-sensitive factor attachment protein receptor mice, and 4 wild-type littermates.
Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer's disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) helps protect dopaminergic neurons in the nigrostriatal tract. Although the cause of nigrostriatal degeneration is unknown, one theory is that excess glutamate from the subthalamic nucleus results in excitotoxic events in the substantia nigra (SN). Because dopaminergic degeneration is accompanied by a reduction in GDNF, we examined glutamate neurotransmission in the SN using a Gdnf heterozygous mouse model (Gdnf(+/-)) at 8 and 12 months of age.
View Article and Find Full Text PDF