Hydrogen, considered to be an alternative fuel to traditional fossil fuels, can be generated by splitting water molecules into hydrogen and oxygen via the use of electrical energy, in a process whose efficiency depends directly on the employed catalytic material. The current study takes part in the relentless search for suitable and low-cost catalysts relevant to the water-splitting field by investigating the electrocatalytic properties of the O and H evolution reactions (OER and HER) of two metalloporphyrins: Zn(II) 5,10,15,20-tetrakis(4-pyridyl)-porphyrin and Co(II) 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The TEM/STEM characterisation of the porphyrin samples obtained using different organic solvents revealed several types of self-assembled aggregates.
View Article and Find Full Text PDFPorphyrins are versatile structures capable of acting in multiple ways. A mixed substituted AB porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by H- and C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.
View Article and Find Full Text PDF