When performing willed actions, we have the unified and coherent experience of owning and controlling our body. Body ownership is believed to emerge from the integration of coherent multisensory signals, while agency is believed to emerge from the coherence between predicted and perceived outcomes of actions. As a consequence, body ownership and agency can both be modulated by multisensory conflicts.
View Article and Find Full Text PDFOur hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2013
Animal models are widely used to explore the mechanisms underlying sensorimotor control and learning. However, current experimental paradigms allow only limited control over task difficulty and cannot provide detailed information on forelimb kinematics and dynamics. Here we propose a novel robotic device for use in motor learning investigations with rats.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2012
The investigation and characterization of sensori-motor learning and execution represents a key objective for the design of optimal rehabilitation therapies following stroke. By supplying new tools to investigate sensorimotor learning and objectively assess recovery, robot assisted techniques have opened new lines of research in neurorehabilitation aiming to complement current clinical strategies. Human studies, however, are limited by the complex logistics, heterogeneous patient populations and large dropout rates.
View Article and Find Full Text PDFObjectives: To examine the feasibility of image-guided navigation using transrectal ultrasound (TRUS) to visualize the neurovascular bundle (NVB) during robot-assisted laparoscopic radical prostatectomy (RALP). The preservation of the NVB during radical prostatectomy improves the postoperative recovery of sexual potency. The accompanying blood vessels in the NVB can serve as a macroscopic landmark to localize the microscopic cavernous nerves in the NVB.
View Article and Find Full Text PDFAim: Precise targeting is essential for adequate treatment of lesions during image-guided therapy. The aim of this study was to compare the performance of two emerging image-guided targeting technologies in a phantom model.
Materials And Methods: A computer-assisted navigation system and AcuBot were tested using three operators: an interventional radiologist and two endourologists.