Publications by authors named "Bogdan Vasyliv"

This work presents the results of metallographic studies and the tensile, impact, and fatigue crack growth (FCG) resistance tests of 17H1S main gas pipeline steel in the as-received (AR) state and after a long-term operation (LTO). A significant number of non-metallic inclusions forming chains stretched along the direction of pipe rolling were found in the microstructure of the LTO steel. The lowest values of elongation at break and impact toughness of the steel were determined for the lower part of the pipe close to its inner surface.

View Article and Find Full Text PDF

Yttria-stabilized zirconia (YSZ) is well-known as a material with perfect mechanical, thermal, and electrical properties. It is used for manufacturing various high-temperature components for aerospace and energy generation, as well as wear- and corrosion-resistant devices in medicine. This work investigated the effect of a YO addition to ZrO on the microstructure and mechanical properties of YSZ ceramics produced by one sintering schedule.

View Article and Find Full Text PDF

It is known that the yttria-stabilized zirconia (YSZ) material has superior thermal, mechanical, and electrical properties. This material is used for manufacturing products and components of air heaters, hydrogen reformers, cracking furnaces, fired heaters, etc. This work is aimed at searching for the optimal sintering mode of YSZ ceramics that provides a high crack growth resistance.

View Article and Find Full Text PDF

The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C.

View Article and Find Full Text PDF

The cyclic treatment technique (redox cycling) comprising stages of material exposition in reducing and oxidizing high-temperature environments and intermediate degassing between these stages has been developed to improve the structural integrity of YSZ-NiO ceramic anode substrates for solid oxide fuel cells. A series of specimens were singly reduced in a hydrogenous environment (the Ar-5 vol% Н2 mixture or hydrogen of 99.99 vol% H2 purity) under the pressure of 0.

View Article and Find Full Text PDF