Publications by authors named "Bogdan Vasile"

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).

View Article and Find Full Text PDF

With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and evaluation of biocompatibility and anti-biofilm properties of new coatings based on FeO nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles.

View Article and Find Full Text PDF

Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems.

View Article and Find Full Text PDF

Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions.

View Article and Find Full Text PDF

This study's main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of FeO cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate.

View Article and Find Full Text PDF

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization.

View Article and Find Full Text PDF

Metal nanoparticle phytosynthesis has become, in recent decades, one of the most promising alternatives for the development of nanomaterials using "green chemistry" methods. The present work describes, for the first time in the literature, the phytosynthesis of silver nanoparticles (AgNPs) using extracts obtained by two methods using the aerial parts of L. The extracts (obtained by classical temperature extraction and microwave-assisted extraction) were characterized in terms of total phenolics content and by HPLC analysis, while the phytosynthesis process was confirmed using X-ray diffraction and transmission electron microscopy, the results suggesting that the classical method led to the obtaining of smaller-dimension AgNPs (average diameter under 15 nm by TEM).

View Article and Find Full Text PDF

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols.

View Article and Find Full Text PDF

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis.

View Article and Find Full Text PDF

Hyssop ( L.) and oregano ( L.), traditionally used for their antimicrobial properties, can be considered viable candidates for nanotechnology applications, in particular for the phytosynthesis of metal nanoparticles.

View Article and Find Full Text PDF

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings.

View Article and Find Full Text PDF

Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials.

View Article and Find Full Text PDF

A new method for the synthesis and deposition of tungsten oxide nanopowders directly on the surface of a carbon-fiber-reinforced polymer composite (CFRP) is presented. The CFRP was chosen because this material has very good thermal and mechanical properties and chemical resistance. Also, CFRPs have low melting points and are transparent under ionized radiation.

View Article and Find Full Text PDF

A novel high-entropy perovskite powder with the composition BiKBaSrCaTiO was successfully synthesized using a modified Pechini method. The precursor powder underwent characterization through Fourier Transform Infrared Spectroscopy and thermal analysis. The resultant BiKBaSrCaTiO powder, obtained post-calcination at 900 °C, was further examined using a variety of techniques including X-ray diffraction, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy.

View Article and Find Full Text PDF

Magnetite nanoparticles (FeO NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, FeO NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques.

View Article and Find Full Text PDF

A Ga-substituted spinel magnetite nanoparticles (NPs) with the formula GaFeO were synthesized using both the one-pot solvothermal decomposition method (TD) and the microwave-assisted heating method (MW). Stable colloidal solutions were obtained by using triethylene glycol, which served as a NPs stabilizer and as a reaction medium in both methods. A narrow size distribution of NPs, below 10 nm, was achieved through selected nucleation and growth.

View Article and Find Full Text PDF

Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes.

View Article and Find Full Text PDF

Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSiO) and akermanite (CaMgSiO) obtained at low sintering temperatures.

View Article and Find Full Text PDF

Magnesium oxide (MgO) was synthesized by three different methods: the sol-gel (SG), microwave-assisted sol-gel (MW), and hydrothermal (HT) methods for comparing the influence of the preparation conditions on the properties of the products. The powders were annealed at 450 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM/HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), BET specific surface area and porosity, photoluminescence, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

The highest amount of the world's polyethylene terephthalate (PET) is designated for fiber production (more than 60%) and food packaging (30%) and it is one of the major polluting polymers. Although there is a great interest in recycling PET-based materials, a large amount of unrecycled material is derived mostly from the food and textile industries. The aim of this study was to obtain and characterize nanostructured membranes with fibrillar consistency based on recycled PET and nanoparticles (FeO@UA) using the electrospinning technique.

View Article and Find Full Text PDF

A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed.

View Article and Find Full Text PDF

The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles.

View Article and Find Full Text PDF

Injuries and diseases of the skin require accurate treatment using nontoxic and noninvasive biomaterials, which aim to mimic the natural structures of the body. There is a strong need to develop biodevices capable of accommodating nutrients and bioactive molecules and generating the process of vascularization. Electrospinning is a robust technique, as it can form fibrous structures for tissue engineering and wound dressings.

View Article and Find Full Text PDF

Two new families of zinc/cobalt/aluminum-based pigments, with a unique composition, were obtained through the polyol method. The hydrolysis process of a mixture of Co(CHCOO), Zn(acac) and Al(acac) (acac = acetylacetonate ion) in 1,4-butanediol afforded dark blue gels (wPZnxCo1-xAl), in the presence of a supplementary amount of water, and light green powders (PZnxCo1-xAl), respectively, for the water-free procedure ( = 0, 0.2, 0.

View Article and Find Full Text PDF