Publications by authors named "Bogdan Purcareanu"

Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).

View Article and Find Full Text PDF

Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems.

View Article and Find Full Text PDF

This study's main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of FeO cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate.

View Article and Find Full Text PDF

Magnetite nanoparticles (FeO NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, FeO NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques.

View Article and Find Full Text PDF

Currently, the treatment of wounds is still a challenge for healthcare professionals due to high complication incidences and social impacts, and the development of biocompatible and efficient medicines remains a goal. In this regard, mesoporous materials loaded with bioactive compounds from natural extracts have a high potential for wound treatment due to their nontoxicity, high loading capacity and slow drug release. MCM-41-type mesoporous material was synthesized by using sodium trisilicate as a silica source at room temperature and normal pressure.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a hydrogel-based film for the controlled release of vancomycin, an antibiotic, using MCM-41 as a carrier to improve delivery and efficacy, especially in wound care.
  • Researchers synthesized malic acid-coated magnetite nanoparticles and loaded them with vancomycin, which were then incorporated into alginate films designed for potential use as wound dressings.
  • The final films demonstrated sustained release of vancomycin over 48 hours and showed effective antimicrobial properties, particularly against vancomycin-resistant strains, while also having the potential to be responsive to external magnetic triggers.
View Article and Find Full Text PDF

As a third-generation β-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO's essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption and desorption from different functionalized mesoporous silica supports. The MCM-41-type nanostructured mesoporous silica support was synthesized by sol-gel technique using a tetraethyl orthosilicate (TEOS) route and cetyltrimethylammonium bromide (CTAB) as a surfactant, at room temperature and normal pressure.

View Article and Find Full Text PDF

Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction or heat treatment, leading to an undesired environmental impact because of the generated by-products. Hence, in the present study, we followed the synthesis of a silica material with a wormhole-like pore arrangement, using two FDA-approved substances as templates, namely Tween-20 and starch.

View Article and Find Full Text PDF

This work describes a new synthesis method for core-shell magnetite nanoparticles with a secondary silica shell, functionalized with a linker system (FeO-PABA-SiO-linker) using a microwave-assisted heating technique. The functionalized solid nanomaterial was used for the nanophase synthesis of peptides (Fmoc route) as a solid support. The co-precipitation method was selected to obtain magnetite nanoparticles and sol-gel technique for silica coating using a microwave-assisted (MW) procedure.

View Article and Find Full Text PDF

A disadvantage of the use of pentacene and typical organic materials in electronics is that their precursors are toxic for manufacturers and the environment. To the best of our knowledge, this is the first report of an n-type non-toxic semiconductor for organic transistors that uses sulpho-salicylic acid-a stable, electron-donating compound with reduced toxicity-grafted on a ferrite core-shell and a green synthesis method. The micro-physical characterization indicated a good dispersion stability and homogeneity of the obtained nanofilms using the dip-coating technique.

View Article and Find Full Text PDF

Functionalized magnetic nanoparticles followed two main directions in the field of biomedical applications: one direction is as image enhancing agents for magnetic resonance imaging (MRI) and the other is as drugdelivery devices for various biologically-active substances. A third field which just emerges in nanomedicine is the field of the so-called theranostic devices which combines in the same delivery vehicle both the therapeutic agent and the contrast substance. The advantages of using nanoparticles instead of larger carriers for delivery of both drug and image contrast enhancing agents will be highlighted throughout this review article.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk9a080q7bb52314g837ku256va2gcbu7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once