Publications by authors named "Bogdan Mocan"

This article proposes a new, improved home-based cardiac telerehabilitation system enhanced by a robotic and Virtual Reality module for cardiac patients to be used in their rehabilitation program. In this study, a novel strategy was used to integrate existing equipment and applications with newly developed ones, with the aim of reducing the need for technical skills of patients using remote control. Patients with acute or chronic heart diseases require long-term, individualized rehabilitation in order to promote their motor recovery and maintain an active and independent lifestyle.

View Article and Find Full Text PDF
Article Synopsis
  • The precise location of gastric and colorectal tumors is crucial for surgical procedures, especially in laparoscopic surgeries, where small tumors can be difficult to locate.
  • A new instrument has been developed, incorporating an inductive proximity sensor and modified endoscopic clips, aimed at accurately identifying tumors during minimally-invasive surgery.
  • In tests on large animals, the system showed a 65% detection success rate at slow scanning speeds, which improved to 95% with direct guidance, though further enhancements are needed for clinical application.
View Article and Find Full Text PDF

(1) Background and objective: Cardiac rehabilitation (CR) means delivering health education by structured exercises with the means of risk reduction, in a cost-effective manner. Well-conducted CR improves functional capacity, decreases re-hospitalization, and reduces mortality up to 25%. We bring to attention the protocol of a randomised control trial with the aim of validating the prototype of an assistive upper-body robotic exoskeleton system enhanced with a non-immersive virtual reality exergame (CardioVR-ReTone) in patients who undergone cardiac surgery.

View Article and Find Full Text PDF

The accurate localization of small tumors of the digestive tract is of paramount importance in surgical oncology because it dictates the limits of resection and the extent of lymph node dissection. In this view, we have designed and fabricated a highly efficient sensing laparoscopic instrument focused on precise non-invasive extralumenal intraoperative detection of small colorectal or gastric tumors. The equipment is fully adapted for laparoscopic surgery and consists of an inductive proximity sensor encapsulated into a watertight stainless-steel case that is connected to an electronic functional block dimensionally scaled-down by the desired form and size for optimal surgical manipulation.

View Article and Find Full Text PDF

Location of small gastric or colorectal tumors during a laparoscopic procedure is often imprecise and can be misleading. There is a real need for a compatible and straightforward tool that can be used intraoperatively to help the surgeon in this regard. We emphasize in the present work on the fabrication of a new and innovative inductive proximity switch architecture, fully compatible with laparoscopic surgery and with direct application in precise localisation of bowel tumors.

View Article and Find Full Text PDF