Publications by authors named "Bogdan Milicevic"

Article Synopsis
  • Hypertrophic cardiomyopathy (HCM) is a heart condition marked by thickening of the heart muscle, heightening the risk for serious heart issues, and this study looks into the expression of certain genes related to cell death (apoptosis) as potential markers for the disease's progression.
  • Blood samples from 93 HCM patients were analyzed using quantitative real-time PCR (qPCR) to assess gene expression and study the relationship between these genes and clinical parameters.
  • Results showed that many HCM patients had lower levels of specific apoptosis-regulating genes, whereas BAX and another gene were elevated in a significant number of cases, indicating a possible protective response in the heart, which may be explored further for improving treatment outcomes
View Article and Find Full Text PDF

Blood vessels are essential for maintaining tumor growth, progression, and metastasis, yet the tumor vasculature is under a constant state of remodeling. Since the tumor vasculature is an attractive therapeutic target, there is a need to predict the dynamic changes in intratumoral fluid pressure and velocity that occur across the tumor microenvironment (TME). The goal of this study was to obtain insight into perfusion anisotropy within lung tumors.

View Article and Find Full Text PDF

The biomechanical and biochemical processes in the biological systems of living organisms are extremely complex. Advances in understanding these processes are mainly achieved by laboratory and clinical investigations, but in recent decades they are supported by computational modeling. Besides enormous efforts and achievements in this modeling, there still is a need for new methods that can be used in everyday research and medical practice.

View Article and Find Full Text PDF

Background And Objective: In accordance with the latest aspirations in the field of bioengineering, there is a need to create a web accessible, but powerful cloud computational platform that combines datasets and multiscale models related to bone modeling, cancer, cardiovascular diseases and tissue engineering. The SGABU platform may become a powerful information system for research and education that can integrate data, extract information, and facilitate knowledge exchange with the goal of creating and developing appropriate computing pipelines to provide accurate and comprehensive biological information from the molecular to organ level.

Methods: The datasets integrated into the platform are obtained from experimental and/or clinical studies and are mainly in tabular or image file format, including metadata.

View Article and Find Full Text PDF

Background And Objective: Predicting the long-term expansion and remodeling of the left ventricle in patients is challenging task but it has the potential to be clinically very useful.

Methods: In our study, we present machine learning models based on random forests, gradient boosting, and neural networks, used to track cardiac hypertrophy. We collected data from multiple patients, and then the model was trained using the patient's medical history and present level of cardiac health.

View Article and Find Full Text PDF

Cardiomyopathy is associated with structural and functional abnormalities of the ventricular myocardium and can be classified in two major groups: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Computational modeling and drug design approaches can speed up the drug discovery and significantly reduce expenses aiming to improve the treatment of cardiomyopathy. In the SILICOFCM project, a multiscale platform is developed using coupled macro- and microsimulation through finite element (FE) modeling of fluid-structure interactions (FSI) and molecular drug interactions with the cardiac cells.

View Article and Find Full Text PDF

In our paper, we simulated cardiac hypertrophy with the use of shell elements in parametric and echocardiography-based left ventricle (LV) models. The hypertrophy has an impact on the change in the wall thickness, displacement field and the overall functioning of the heart. We computed both eccentric and concentric hypertrophy effects and tracked changes in the ventricle shape and wall thickness.

View Article and Find Full Text PDF

Background And Objective: In silico clinical trials are the future of medicine and virtual testing and simulation are the future of medical engineering. The use of a computational platform can reduce costs and time required for developing new models of medical devices and drugs. The computational platform, which is one of the main results of the SILICOFCM project, was developed using state-of-the-art finite element modeling for macro simulation of fluid-structure interaction with micro modeling at the molecular level for drug interaction with the cardiac cells.

View Article and Find Full Text PDF

Stents made by different manufacturers must meet the requirements of standard mechanical tests performed under different physiological conditions in order to be validated. In addition to research, there is a need for numerical simulations that can help during the stent prototyping phase. simulations have the ability to give the same stent responses as well as the potential to reduce costs and time needed to carry out experimental tests.

View Article and Find Full Text PDF

Clinicians can use biomechanical simulations of cardiac functioning to evaluate various real and fictional events. Our present understanding of the molecular processes behind muscle contraction has inspired Huxley-like muscle models. Huxley-type muscle models, unlike Hill-type muscle models, are capable of modeling non-uniform and unstable contractions.

View Article and Find Full Text PDF

The computational requirements of the Huxley-type muscle models are substantially higher than those of Hill-type models, making large-scale simulations impractical or even impossible to use. We constructed a data-driven surrogate model that operates similarly to the original Huxley muscle model but consumes less computational time and memory to enable efficient usage in multiscale simulations of the cardiac cycle. The data was collected from numerical simulations to train deep neural networks so that the neural networks' behavior resembles that of the Huxley model.

View Article and Find Full Text PDF

The SILICOFCM project mainly aims to develop a computational platform for in silico clinical trials of familial cardiomyopathies (FCMs). The unique characteristic of the platform is the integration of patient-specific biological, genetic, and clinical imaging data. The platform allows the testing and optimization of medical treatment to maximize positive therapeutic outcomes.

View Article and Find Full Text PDF

Bioresorbable vascular scaffolds (BVS), made either from polymers or from metals, are promising materials for treating coronary artery disease through the processes of percutaneous transluminal coronary angioplasty. Despite the opinion that bioresorbable polymers are more promising for coronary stents, their long-term advantages over metallic alloys have not yet been demonstrated. The development of new polymer-based BVS or optimization of the existing ones requires engineers to perform many very expensive mechanical tests to identify optimal structural geometry and material characteristics.

View Article and Find Full Text PDF

Background: The Prostate Biopsy Collaborative Group risk calculator (PBCG RC) has a moderate discriminatory capability. This study aimed to create automated machine learning (AutoML) PBCG RC for predicting the probability of any-grade and high-grade prostate cancer (PCa).

Methods: This retrospective, single-center study was carried out using the database with 832 patients who were subject to transrectal ultrasound-guided prostate biopsy with prostate-specific antigen (PSA) values from 2 to 50 ng/ml.

View Article and Find Full Text PDF

Mass transport represents the most fundamental process in living organisms. It includes delivery of nutrients, oxygen, drugs, and other substances from the vascular system to tissue and transport of waste and other products from cells back to vascular and lymphatic network and organs. Furthermore, movement is achieved by mechanical forces generated by muscles in coordination with the nervous system.

View Article and Find Full Text PDF

We couple a tumor growth model embedded in a microenvironment, with a bio distribution model able to simulate a whole organ. The growth model yields the evolution of tumor cell population, of the differential pressure between cell populations, of porosity of ECM, of consumption of nutrients due to tumor growth, of angiogenesis, and related growth factors as function of the locally available nutrient. The bio distribution model on the other hand operates on a frozen geometry but yields a much refined distribution of nutrient and other molecules.

View Article and Find Full Text PDF

Due to the relative ease of producing nanofibers with a core⁻shell structure, emulsion electrospinning has been investigated intensively in making nanofibrous drug delivery systems for controlled and sustained release. Predictions of drug release rates from the poly (d,l-lactic-co-glycolic acid) (PLGA) produced via emulsion electrospinning can be a very difficult task due to the complexity of the system. A computational finite element methodology was used to calculate the diffusion mass transport of Rhodamine B (fluorescent drug model).

View Article and Find Full Text PDF