Publications by authors named "Bogdan Bogdanov"

Article Synopsis
  • Advanced in vitro diagnostic technologies are essential for early disease detection and monitoring, and this study presents a new multiplex protein biosensing approach using self-assembling multi-material heterochains for improved sensitivity and accuracy compared to traditional methods like ELISA.
  • The engineered biosensor utilizes semiconductor nanoparticles and polymer chains to generate strong optical signals that can effectively detect multiple protein biomarkers in a single test, achieving an ultra-low detection limit of 1 pg/mL.
  • By incorporating a neural network algorithm, this biosensing technology enables rapid and high-throughput quantification of protein levels from various clinical samples, demonstrating its potential for next-generation diagnostic applications in healthcare.
View Article and Find Full Text PDF

Rapid detection of various exosomes is of great significance in early diagnosis and postoperative monitoring of cancers. Here, a divisional optical biochip is reported for multiplex exosome analysis via combining the self-assembly of nanochains and precise surface patterning. Arising from resonance-induced near-field enhancement, the nanochains show distinct color changes after capturing target exosomes for direct visual detection.

View Article and Find Full Text PDF

Biomolecular markers, particularly circulating microRNAs (miRNAs) play an important role in diagnosis, monitoring, and therapeutic intervention of cancers. However, existing detection strategies remain intricate, laborious, and far from being developed for point-of-care testing. Here, we report a portable colorimetric sensor that utilizes the hetero-assembly of nanostructures driven by base pairing and recognition for direct detection of miRNAs.

View Article and Find Full Text PDF

Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66).

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are well positioned to elucidate the aspects of electrospray ionization (ESI) and high-energy collision dissociation (HCD), as well as give insight into processes that involve neutral species that cannot be observed experimentally in ESI, HCD, and collision-induced dissociation (CID). Here, we utilize temperature dissociation molecular dynamics (TDMD) to model the HCD/CID of lithium formate clusters carrying a single positive charge. These simulations successfully reproduce the experimental ESI HCD spectra of lithium formate solutions and also support the existence of magic number clusters (MNCs) that have been observed.

View Article and Find Full Text PDF

The site of protonation for gas-phase aniline has been debated for many years, with many research groups contributing experimental and computational evidence for either the amino-protonated or the para-carbon-protonated tautomer as the gas-phase global minimum structure. Here, we employ differential mobility spectrometry (DMS) and mass spectrometry (MS) to separate and characterize the amino-protonated (N-protonated) and para-carbon-protonated ( p-protonated) tautomers of aniline. We demonstrate that upon electrospray ionization (ESI), aniline is protonated predominantly at the amino position.

View Article and Find Full Text PDF

Fourier transform mass spectrometry (FTMS) is the method of choice for measurements that require ultra-high resolution. The establishment of Fourier transform ion cyclotron resonance (FTICR) MS, the availability of biomolecular ionization techniques and the introduction of the Orbitrap™ mass spectrometer have widened the number of FTMS-applications enormously. One recent example involves clinical proteomics using FTICR-MS to discover and validate protein biomarker signatures in body fluids such as serum or plasma.

View Article and Find Full Text PDF

Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N2). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi)nLi(+), (HCOOLi)nLim (m+), (HCOOLi)nHCOO(-), and (HCOOLi)n(HCOO)m (m-). Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li(+) being the most abundant and stable cluster ion.

View Article and Find Full Text PDF

The fragmentation patterns of a group of doubly protonated ([P + 2H](2+)) and mixed protonated-sodiated ([P + H + Na](2+)) peptide-mimicking oligomers, known as peptoids, have been studied using electron capturing dissociation (ECD) tandem mass spectrometry techniques. For all the peptoids studied, the primary backbone fragmentation occurred at the N-Cα bonds. The N-terminal fragment ions, the C-ions (protonated) and the C'-ions (sodiated) were observed universally for all the peptoids regardless of the types of charge carrier.

View Article and Find Full Text PDF

A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT)-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) were analyzed.

View Article and Find Full Text PDF

The McLafferty rearrangement is an extensively studied fragmentation reaction for the odd-electron positive ions from a diverse range of functional groups and molecules. Here, we present experimental and theoretical results of 12 model compounds that were synthesized and investigated by GC-TOF MS and density functional theory calculations. These compounds consisted of three main groups: carbonyls, oximes and silyl oxime ethers.

View Article and Find Full Text PDF

As part of the investigation of the pseudouridine synthases, 5-fluorouridine in RNA was employed as a mechanistic probe. The hydrated, rearranged product of 5-fluorouridine was isolated as part of a dinucleotide and found to undergo unusual fragmentation during mass spectrometry, with the facile loss of HNCO from the product pyrimidine ring favored over phosphodiester bond rupture. Although the loss of HNCO from uridine and pseudouridine is well established, the pericyclic process leading to their fragmentation cannot operate with the saturated pyrimidine ring in the product of 5-fluorouridine.

View Article and Find Full Text PDF

Data analysis in metabolomics is currently a major challenge, particularly when large sample sets are analyzed. Herein, we present a novel computational platform entitled MetSign for high-resolution mass spectrometry-based metabolomics. By converting the instrument raw data into mzXML format as its input data, MetSign provides a suite of bioinformatics tools to perform raw data deconvolution, metabolite putative assignment, peak list alignment, normalization, statistical significance tests, unsupervised pattern recognition, and time course analysis.

View Article and Find Full Text PDF

A method was developed to employ National Institute of Standards and Technology (NIST) 2008 retention index database information for molecular retention matching via constructing a set of empirical distribution functions (DFs) of the absolute retention index deviation to its mean value. The effects of different experimental parameters on the molecules' retention indices were first assessed. The column class, the column type, and the data type have significant effects on the retention index values acquired on capillary columns.

View Article and Find Full Text PDF

A method was developed to calculate the second dimension retention index of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) data using n-alkanes as reference compounds. The retention times of the C(7)-C(31) alkanes acquired during 24 isothermal experiments cover the 0-6s retention time area in the second dimension retention time space, which makes it possible to calculate the retention indices of target compounds from the corresponding retention time values without the extension of the retention space of the reference compounds. An empirical function was proposed to show the relationship among the second dimension retention time, the temperature of the second dimension column, and the carbon number of the n-alkanes.

View Article and Find Full Text PDF

A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS)-based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list.

View Article and Find Full Text PDF

Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein.

View Article and Find Full Text PDF

We describe methods for mass spectrometric identification of heme-containing peptides from c-type cytochromes that contain the CXXCH (X=any amino acid) sequence motif. The heme fragment ion yielded the most abundant MS/MS peak for standard heme-containing peptides with one amino acid difference for both 2+ and 3+ peptide charge states; both sequence and charge affect the extent of heme loss. Application to Shewanella oneidenis demonstrated the utility of this approach for identifying c-type heme-containing peptides from complex proteome samples.

View Article and Find Full Text PDF

We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer.

View Article and Find Full Text PDF

In proteomics, effective methods are needed for identifying the relatively limited subset of proteins displaying significant changes in abundance between two samples. One way to accomplish this task is to target for identification by MS/MS only the "interesting" proteins based on the abundance ratio of isotopically labeled pairs of peptides. We have developed the software and hardware tools for online LC-FTICR MS/MS studies in which a set of initially unidentified peptides from a proteome analysis can be selected for identification based on their distinctive changes in abundance following a "perturbation".

View Article and Find Full Text PDF

Ion transfer and storage using inhomogeneous radio frequency (RF) electric fields in combination with gas-assisted ion cooling and focusing constitutes one of the basic techniques in mass spectrometry today. The RF motion of ions in the bath gas environment involves a large number of ion-neutral collisions that leads to the internal activation of ions and their effective "heating" (when a thermal distribution of internal energies results). The degree of ion activation required in various applications may range from a minimum level (e.

View Article and Find Full Text PDF

A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms.

View Article and Find Full Text PDF

This review provides a broad overview of recent Fourier transform ion cyclotron resonance (FTICR) applications and technological developments relevant to the field of proteomics. Both the "bottom up" (peptide level) and "top down" (intact protein level) approaches are discussed and illustrated with examples. "Bottom up" topics include peptide fragmentation, the accurate mass and time (AMT) tag approach and dynamic range extension technology, aspects of quantitative proteomics measurements, post-translational modifications, and developments in FTICR operation software focused on peptide and protein identification.

View Article and Find Full Text PDF

This work focuses on the development of a multidimensional electrokinetic-based separation/concentration platform coupled with electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) for achieving the high resolution and ultrasensitive analysis of complex protein/peptide mixtures. A microdialysis junction is employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) with transient capillary isotachophoresis/zone electrophoresis (CITP/CZE) in an integrated platform. Besides the excellent resolving power afforded by both CIEF and CZE separations, the electrokinetic focusing/stacking effects of CIEF and CITP greatly enhance the dynamic range and detection sensitivity of MS for protein identification.

View Article and Find Full Text PDF