This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses.
View Article and Find Full Text PDFIn mouse motor synapses, the exogenous application of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG) increases acetylcholine (ACh) quantal size due to the activation of CB1 receptors and the stimulation of ACh vesicular uptake. In the present study, microelectrode recordings of miniature endplate potentials (MEPP) revealed that this effect of 2-AG is independent of brain-derived neurotrophic factor (BDNF) signaling but involves the activation of calcitonin gene-related peptide (CGRP) receptors along with CB1 receptors. Potentiation of MEPP amplitude in the presence of 2-AG was prevented by blockers of CGRP receptors and ryanodine receptors (RyR) and by inhibitors of phospholipase C (PLC) and Ca /calmodulin-dependent protein kinase II (CaMKII).
View Article and Find Full Text PDFThe effects of brain-derived neurotrophic factor (BDNF) processing by-products (proBDNF and BDNF prodomain) on the activity of mouse neuromuscular junctions (NMJs) were studied in synapses formed during the reinnervation of extensor digitorum longus muscle (m. EDL) and mature synapses of the diaphragm. The parameters of spontaneous miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were analyzed in presence of each of the BDNF maturation products (both - 1 nM).
View Article and Find Full Text PDFIn mouse motor synapses tetanic neuromuscular activity (30 Hz, 2 min) led to a delayed posttetanic potentiation of amplitude and duration of spontaneous miniature endplate potentials (MEPPs). Microelectrode recordings of MEPPs before and after nerve stimulation showed an increase in MEPP amplitude and time course by 30% and 15%, respectively, without changes in their frequency. Peak effect was detected 20 min after tetanic activity and progressively faded throughout the next 40 min of recording.
View Article and Find Full Text PDFThe aim of this study was to compare the acute effects of thrombin and brain-derived neurotrophic factor (BDNF) on spontaneous miniature endplate potentials (MEPPs) and multiquantal evoked endplate potentials (EPPs) in mouse neuromuscular junctions (NMJs) of m. diaphragma and m. EDL.
View Article and Find Full Text PDFWe used an intracellular microelectrode technique to study the mechanisms of action of two isoforms (human and rat) of calcitonin gene-related peptide (CGRP) on the evoked and spontaneous quantal secretion of acetylcholine (ACh) in mouse diaphragm motor synapses. Recordings of miniature endplate potentials (MEPPs) and evoked multiquantal endplate potentials (EPPs) in a cut neuromuscular preparation showed that CGRP increased the amplitude of EPPs without influencing their quantal content. Both isoforms of CGRP in a wide range of concentrations (1nM-1μM) provoked a similar considerable increase in MEPPs amplitude in a dose-dependent manner (up to 150-160% compared to control) without changing their frequency, rise-time, and decay.
View Article and Find Full Text PDFBull Exp Biol Med
September 2015
In mouse motor synapses, a non-selective purinoceptor antagonist suramin increased the quantum content of endplate potentials (EPP) without changing the time course of synaptic potentials. An ectonucleotidase inhibitor ARL 67156 had no effect on the amplitude and quantum content of EPP and miniature endplate potentials (mEPP) evoked by single stimuli, but significantly prolonged their duration. Long-term high-frequency stimulation of the nerve in the presence of ARL 67156 persistently increased the amplitude and duration of EPP during the train of impulses, but did not change their quantum content.
View Article and Find Full Text PDFThe mechanism of action of tonically applied choline, the agonist of α7 nicotinic acetylcholine receptors (nAChRs), to the spontaneous and evoked release of a neurotransmitter in mouse motor synapses in diaphragm neuromuscular preparations using intracellular microelectrode recordings of miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) was studied. Exogenous choline was shown to exhibit a presynaptic inhibitory effect on the amplitude and quantal content of EPPs for the activity of neuromuscular junction evoked by single and rhythmic stimuli. This effect was inhibited either by antagonists of α7-nAChRs, such as methyllycaconitine and α-cobratoxin, or by blocking SK-type calcium-activated potassium (KCa) channels with apamin or blocking intraterminal ryanodine receptors with ryanodine.
View Article and Find Full Text PDFL-type Ca(2+)-channel blockers, verapamil (5 microM) and nifedipine (10 microM), have increased the quantum composition of endplate potentials (EPP) and the level of induced rhythmic activity of neogenic synapses. L-type Ca(2+)-channel activator BAY 8644 (1 microM) has a decreased mediator secretion level. Nifedipine (10 microM) has not changed the frequency and amplitude of diminutive EPPs in the dormant state or during potassium depolarization.
View Article and Find Full Text PDFBull Exp Biol Med
February 2007
Verapamil (5 microM), nifedipine (10 microM), and ryanodine (10 microM) potentiated rhythmic activity of newly formed synapses, while apamin produced no effect on this potentiation. Ryanodine (1 microM) suppressed synaptic activity, and this effect can be prevented with nifedipine. It was hypothesized that in newly formed synapses Ca2+ entry through L-type channels triggers the release of stored Ca2+, which inhibits secretion of the neurotransmitter.
View Article and Find Full Text PDFThe generation of effector, IFN-gamma producing T lymphocytes and their accumulation at sites of infection are critical for host protection against various infectious diseases. The activation and differentiation of naive T lymphocytes into effector memory cells starts in lymphoid tissues, but it is not clear whether the Ag-experienced cells that leave lymph nodes (LN) are mature or if they undergo further changes in the periphery. We have previously shown that CD44(high)CD62L(low) effector CD4 T lymphocytes generated during the course of mycobacterial infection can be segregated into two subsets on the basis of CD27 receptor expression.
View Article and Find Full Text PDF