Publications by authors named "Bogachev S"

In this part of the study, the first component of the concept of "natural genome reconstruction" is being proven. It was shown with mouse and human model organisms that CD34+ hematopoietic bone marrow progenitors take up fragments of extracellular double-stranded DNA through a natural mechanism. It is known that the process of internalization of extracellular DNA fragments involves glycocalyx structures, which include glycoproteins/protein glycans, glycosylphosphatidylinositol-anchored proteins and scavenger receptors.

View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

Vitamin D transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines.

View Article and Find Full Text PDF

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF).

View Article and Find Full Text PDF

Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell.

View Article and Find Full Text PDF

Group-specific component macrophage-activating factor (GcMAF) is the vitamin D-binding protein (DBP) deglycosylated at Thr. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study.

View Article and Find Full Text PDF

This paper describes in detail a compact (2U format) telescope operating in the extreme ultraviolet range for studying the solar corona at a wavelength of 17.14 nm. The telescope objective has been built according to the Ritchey-Chrétien scheme with the following parameters: effective focal length of 381.

View Article and Find Full Text PDF

Olfactory dysfunction is an early marker of COVID-19 infection. However, individuals may develop chronic olfactory impairment for more than six months in 1-10 % of cases. The study's objective is to evaluate the efficacy and safety of intranasal immunotherapy using bioactive substances produced by M2 macrophages for the treatment of people with long-term post-COVID-19 hyposmia.

View Article and Find Full Text PDF

We studied angiogenin production by human macrophages and evaluated the role of this factor in the macrophage-mediated regulation of fibroblasts. All macrophage subtypes, and especially the efferocytosis-polarized macrophages, M2(LS), actively produced angiogenin. Exogenous recombinant angiogenin dose-dependently enhanced the proliferation and differentiation of dermal fibroblasts.

View Article and Find Full Text PDF

A biotechnology for personalized ex vivo gene therapy based on molecular genomic balancing of hematopoietic stem cell (HSC) chromatin with nucleosome monomers of human genomic DNA (hDNA) has been developed and implemented in the clinic to change (to "correct") mutant chromosome loci genomes of dominant HSC clones that form mono- and oligoclonal hematopoiesis during aging and major (oncological, cardiovascular, neurodegenerative and autoimmune) fatal immune-mediated diseases of civilization. A fundamentally new biotechnological approach has been applied to the delivery of genetic material into eukaryotic stem and progenitor cells by establishing an artificial "recombinogenic situation" in them to induce homologous recombination (equivalent replacement) of mutant DNA regions with healthy hDNA. In experimental preclinical trials, the effectiveness of genomic balancing technology has been proven to reduce the risk of sudden death in old animals and to increase the lifespan of outbred mice by 30% and Wistar rats by 57%.

View Article and Find Full Text PDF

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells . Comparative analysis of the antitumor effects of vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted.

View Article and Find Full Text PDF

Background: Double-stranded fragmented extracellular DNA is a participant, inducer, and indicator of various processes occurring in the organism. When investigating the properties of extracellular DNA, the question regarding the specificity of exposure to DNA from different sources has always been raised. The aim of this study was to perform comparative assessment of biological properties of double-stranded DNA obtained from the human placenta, porcine placenta and salmon sperm.

View Article and Find Full Text PDF

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells.

View Article and Find Full Text PDF

An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions.

View Article and Find Full Text PDF

Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization.

View Article and Find Full Text PDF

The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP).

View Article and Find Full Text PDF

A new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named "Karanahan", has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma.

View Article and Find Full Text PDF

Introduction: , a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation.

View Article and Find Full Text PDF

Objective: We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as (from the Sanskrit ["source"] + ["to kill"]).

Background: In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction.

View Article and Find Full Text PDF

Objective: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective.

Methods: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA.

View Article and Find Full Text PDF

Background/aim: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit kāraṇa ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells.

Materials And Methods: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma.

Results: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to assess the capability of recombinant angiogenin isolated from yeasts to stimulate regenerative processes in the dermis of experimental animals.

Patients And Methods: Wistar rats were administered with recombinant angiogenin intracutaneously. Morphological examination of the skin and the assessment of the proliferative activity of the epidermal cells were carried out.

View Article and Find Full Text PDF

Myeloid dendritic cells (DCs) play an important role in the immune response; therefore, the search for compounds that can effectively activate DCs is a needful goal. This study was aimed to investigate the effect of synthetic CpG oligodeoxynucleotides (CpG-ODN) on the maturation and allostimulatory activity of myeloid DCs in comparison with other PAMP and DAMP molecules. For the research, we synthesized known CpG-ODN class C (SD-101 and D-SL03) containing thiophosphate internucleotide groups, and their original phosphate-modified analogues (SD-101M and D- SL03M) with mesylphosphoramide internucleotide groups (M = μ-modification).

View Article and Find Full Text PDF

The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy.

View Article and Find Full Text PDF

The Purpose Of The Article: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation.

Materials And Methods: Experimental animals were irradiated on the γ-emitter (Cs) with a dose of 9.

View Article and Find Full Text PDF