Unlabelled: Epithelial-to-mesenchymal transition (EMT) in cancer cells confers migratory abilities, a crucial aspect in the metastasis of tumors that frequently leads to death. In multiple studies, authors proposed gene expression signatures for EMT, stemness, or mesenchymality of tumors based on bulk tumor expression profiling. However, recent studies suggested that noncancerous cells from the microenvironment or macroenvironment heavily influence such signature profiles.
View Article and Find Full Text PDFBackground: Robust immune cell gene expression signatures are central to the analysis of single cell studies. Nearly all known sets of immune cell signatures have been derived by making use of only single gene expression datasets. Utilizing the power of multiple integrated datasets could lead to high-quality immune cell signatures which could be used as superior inputs to machine learning-based cell type classification approaches.
View Article and Find Full Text PDFCopy number alterations constitute important phenomena in tumor evolution. Whole genome single-cell sequencing gives insight into copy number profiles of individual cells, but is highly noisy. Here, we propose CONET, a probabilistic model for joint inference of the evolutionary tree on copy number events and copy number calling.
View Article and Find Full Text PDFBackground: Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments.
Results: To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort.