Publications by authors named "Boehm V"

The number of clinical studies and associated research has increased significantly in the last few years. Particularly in rare diseases, an increased effort has been made to integrate, analyse, and develop new knowledge to improve patient stratification and wellbeing. Clinical databases, including digital medical records, hold significant amount of information that can help understand the impact and progression of diseases.

View Article and Find Full Text PDF

The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD).

View Article and Find Full Text PDF

The nonsense-mediated RNA decay (NMD) pathway is a crucial mechanism of mRNA quality control. Current annotations of NMD substrate RNAs are rarely data-driven, but use generally established rules. We present a data set with four cell lines and combinations for , , and knockdowns or knockout.

View Article and Find Full Text PDF

Cell autonomous responses to intracellular bacteria largely depend on reorganization of gene expression. To gain isoform-level resolution of these modes of regulation, we combined long- and short-read transcriptomic analyses of the response of intestinal epithelial cells to infection by the foodborne pathogen Listeria monocytogenes. Among the most striking isoform-based types of regulation, expression of the cellular stress response regulator CIRBP (cold-inducible RNA-binding protein) and of several SRSFs (serine/arginine-rich splicing factors) switched from canonical transcripts to nonsense-mediated decay-sensitive isoforms by inclusion of 'poison exons'.

View Article and Find Full Text PDF

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic cause of kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the first drug with proven disease-modifying activity. Long-term treatment adherence is crucial, but a considerable fraction of patients discontinue treatment, because of aquaretic side effects.

View Article and Find Full Text PDF

Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8.

View Article and Find Full Text PDF

The exon junction complex (EJC) is an RNA-binding multi-protein complex with critical functions in post-transcriptional gene regulation. It is deposited on the mRNA during splicing and regulates diverse processes including pre-mRNA splicing and nonsense-mediated mRNA decay (NMD) via various interacting proteins. The peripheral EJC-binding protein RNPS1 was reported to serve two insufficiently characterized functions: suppressing mis-splicing of cryptic splice sites and activating NMD in the cytoplasm.

View Article and Find Full Text PDF

The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense-mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor.

View Article and Find Full Text PDF

Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps.

View Article and Find Full Text PDF

The current ecosystem of single cell RNA-seq platforms is rapidly expanding, but robust solutions for single cell and single molecule full- length RNA sequencing are virtually absent. A high-throughput solution that covers all aspects is necessary to study the complex life of mRNA on the single cell level. The Nanopore platform offers long read sequencing and can be integrated with the popular single cell sequencing method on the 10x Chromium platform.

View Article and Find Full Text PDF

Background: Teduglutide (TED) is a glucagon-like peptide 2 analogue approved in patients with short bowel syndrome with chronic intestinal failure. Bowel epithelial hyperplasia has been reported after TED treatment.

Objective: The aim of this study was to describe small bowel modifications at imaging in patients with SBS-CIF receiving TED and to assess their predictive value for clinical response.

View Article and Find Full Text PDF

Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability.

View Article and Find Full Text PDF

The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins.

View Article and Find Full Text PDF

Teduglutide (TED) reduces the need for parenteral support (PS) in patients with short-bowel syndrome with intestinal failure (SBS-IF). It is a glucagon-like peptide-2 analog that improves absorption, induces the expansion of the absorptive epithelium in the small intestine, and may be used in patients with SBS-IF after a 6- to 12-month adaptation period, if PS is always necessary. We described the functional and morphological effect of TED in a 40-year-old female patient with SBS-IF due to Crohn's disease who underwent terminal jejunostomy after 12 months of drug exposition.

View Article and Find Full Text PDF

Background & Aims: Teduglutide, a GLP-2-analog, has proven effective in two placebo-controlled studies in reducing parenteral support (PS) in patients with short bowel syndrome-associated intestinal failure (SBS-IF) after 24 weeks. The aim of this study was to describe in a real-life situation the effects of teduglutide treatment and their predictive factors.

Methods: We included 54 consecutive SBS-IF patients treated with teduglutide in France for at least 6 months from 10 expert centers.

View Article and Find Full Text PDF

RNA degradation ensures appropriate levels of mRNA transcripts within cells and eliminates aberrant RNAs. Detailed studies of RNA degradation dynamics have been heretofore infeasible because of the inherent instability of degradation intermediates due to the high processivity of the enzymes involved. To visualize decay intermediates and to characterize the spatiotemporal dynamics of mRNA decay, we have developed a set of methods that apply XRN1-resistant RNA sequences (xrRNAs) to protect mRNA transcripts from 5'-3' exonucleolytic digestion.

View Article and Find Full Text PDF

Learned safety is a fear inhibitory mechanism, which regulates fear responses, promotes episodes of safety and generates positive affective states. Despite its potential as experimental model for several psychiatric illnesses, including post-traumatic stress disorder and depression, the molecular mechanisms of learned safety remain poorly understood, We here investigated the molecular mediators of learned safety, focusing on the characterization of miRNA expression in the basolateral amygdala (BLA). Comparing levels of 22 miRNAs in learned safety and learned fear trained mice, six safety-related miRNAs, including three members of the miR-132/-212 family, were identified.

View Article and Find Full Text PDF

Background: Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver.

Objective: To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported.

Results: Both patients are compound heterozygotes for p.

View Article and Find Full Text PDF

Widely used for their anti-inflammatory and immunosuppressive properties, glucocorticoids are nonetheless responsible for the development of diabetes and lipodystrophy. Despite an increasing number of studies focused on the adipocyte glucocorticoid receptor (GR), its precise role in the molecular mechanisms of these complications has not been elucidated. In keeping with this goal, we generated a conditional adipocyte-specific murine model of GR invalidation (AdipoGR knockout [KO] mice).

View Article and Find Full Text PDF

Productive splicing of human precursor messenger RNAs (pre-mRNAs) requires the correct selection of authentic splice sites (SS) from the large pool of potential SS. Although SS consensus sequence and splicing regulatory proteins are known to influence SS usage, the mechanisms ensuring the effective suppression of cryptic SS are insufficiently explored. Here, we find that many aberrant exonic SS are efficiently silenced by the exon junction complex (EJC), a multi-protein complex that is deposited on spliced mRNA near the exon-exon junction.

View Article and Find Full Text PDF

Messenger RNA (mRNA) turnover is a crucial and highly regulated step of gene expression in mammalian cells. This includes mRNA surveillance pathways such as nonsense-mediated mRNA decay (NMD), which assesses the fidelity of transcripts and eliminates mRNAs containing a premature translation termination codon (PTC). When studying mRNA degradation pathways, reporter mRNAs are commonly expressed in cultivated cells.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) controls gene expression by eliminating mRNAs with premature or aberrant translation termination. Degradation of NMD substrates is initiated by the central NMD factor UPF1, which recruits the endonuclease SMG6 and the deadenylation-promoting SMG5/7 complex. The extent to which SMG5/7 and SMG6 contribute to the degradation of individual substrates and their regulation by UPF1 remains elusive.

View Article and Find Full Text PDF

The European Society for Clinical Nutrition has published recommendations on the 'definition and classification of intestinal failure (IF)'. Two criteria must be present: a 'decreased absorption of macronutrients and/or water and electrolytes due to a loss of gut function' and the 'need for parenteral support'. Home parenteral support (HPS) is the primary treatment for chronic IF but is associated with complications.

View Article and Find Full Text PDF

The turnover of messenger RNAs (mRNAs) is a key regulatory step of gene expression in eukaryotic cells. Due to the complexity of the mammalian degradation machinery, the contribution of decay factors to the directionality of mRNA decay is poorly understood. Here we characterize a molecular tool to interrogate mRNA turnover via the detection of XRN1-resistant decay fragments (xrFrag).

View Article and Find Full Text PDF