Publications by authors named "Bodrug S"

Background: Prostate cancer gene 3 (PCA3) encodes a prostate-specific mRNA that has shown promise as a prostate cancer diagnostic tool. This report describes the characterization of a prototype quantitative PCA3-based test for whole urine.

Methods: Whole-urine specimens were collected after digital rectal examination from 3 groups: men scheduled for prostate biopsy (n = 70), healthy men (<45 years of age with no known prostate cancer risk factors; n = 52), and men who had undergone radical prostatectomy (n = 21).

View Article and Find Full Text PDF

Human immunodeficiency type 1 (HIV-1) continues to spread at an alarming rate. The virus may be transmitted through blood, genital secretions, and breast milk, and higher levels of systemic virus in the index case, as measured by plasma RNA viral load, have been shown to correlate with increased risk of transmitting HIV-1 both vertically and sexually. Less is known about the correlation between transmission and HIV-1 levels in breast milk or genital secretions, in part because reliable quantitative assays to detect HIV-1 in these fluids are not available.

View Article and Find Full Text PDF

Accurate and sensitive quantification of human immunodeficiency virus type 1 (HIV-1) RNA has been invaluable as a marker for disease prognosis and for clinical monitoring of HIV-1 disease. The first generation of commercially available HIV-1 RNA tests were optimized to detect the predominant HIV-1 subtype found in North America and Europe, subtype B. However, these tests are frequently suboptimal in detecting HIV-1 genetic forms or subtypes found in other parts of the world.

View Article and Find Full Text PDF

Optimal management of human immunodeficiency virus type 1 (HIV-1) disease requires accurate quantitation of viral RNA concentrations in plasma. Evidence for increasing geographic intermixing of HIV-1 subtypes makes equivalent quantitation of all subtypes essential. The performances of six quantitative viral RNA tests are described, for the first time, with calibrated viral isolates of diverse subtypes.

View Article and Find Full Text PDF

In sub-Saharan Africa, where the effects of human immunodeficiency virus type 1 (HIV-1) have been most devastating, there are multiple subtypes of this virus. The distribution of different subtypes within African populations is generally not linked to particular risk behaviors. Thus, Africa is an ideal setting in which to examine the diversity and mixing of viruses from different subtypes on a population basis.

View Article and Find Full Text PDF

Bcl-2 is an oncogene associated with prevention of apoptosis in a variety of cell types. Bcl-2 expression in B lymphoid cells prolongs antibody production, in vitro and in vivo. A line of transgenic mice (B6) has been developed that expresses human Bcl-2 in the B cells of SWR/SJL mice.

View Article and Find Full Text PDF

The BCL-2 gene was first discovered because of its involvement in the t(14;18) chromosomal translocations commonly found in lymphomas, which result in deregulation of BCL-2 gene expression and cause inappropriately high levels of Bcl-2 protein production. Expression of the BCL-2 gene can also become altered in human cancers through other mechanisms, including loss of the p53 tumor suppressor which normally functions as a repressor of BCL-2 gene expression in some tissues. Bcl-2 is a blocker of programmed cell death and apoptosis that contributes to neoplastic cell expansion by preventing cell turnover caused by physiological cell death mechanisms, as opposed to accelerating rates of cell division.

View Article and Find Full Text PDF

Mcl-1 is a recently described homologue of Bcl-2 whose function and biochemical characteristics remain poorly defined. Gene transfer experiments in lnterleukin-3 (IL-3)-dependent myeloid progenitor 32D.3 cells and pro-B-lymphoid FL5.

View Article and Find Full Text PDF

The mcl-1 gene encodes an approximately 37-kd protein that has significant homology with Bcl-2, an inhibitor of programmed cell death that is expressed in many types of long-lived cells. In this study we determined the in vivo patterns of Mcl-1 protein production in normal human tissues by immunohistochemical means, using specific polyclonal antisera, and made comparisons with Bcl-2. Like Bcl-2, Mcl-1 immunostaining was observed in epithelial cells in a variety of tissues, including prostate, breast, endometrium, epidermis, stomach, intestine, colon, and respiratory tract.

View Article and Find Full Text PDF

Interactions of the Bcl-2 protein with itself and other members of the Bcl-2 family, including Bcl-X-L, Bcl-X-S, Mcl-1, and Bax, were explored with a yeast two-hybrid system. Fusion proteins were created by linking Bcl-2 family proteins to a LexA DNA-binding domain or a B42 trans-activation domain. Protein-protein interactions were examined by expression of these fusion proteins in Saccharomyces cerevisiae having a lacZ (beta-galactosidase) gene under control of a LexA-dependent operator.

View Article and Find Full Text PDF

The Bcl-2 protein blocks programmed cell death and becomes overproduced in many follicular non-Hodgkin's lymphomas as the result of t(14; 18) translocations involving the Bcl-2 gene. Mcl-1 is a recently discovered gene whose encoded protein has significant homology with Bcl-2 but whose function remains unknown. In this study, we compared the in vivo patterns of Bcl-2 and Mcl-1 protein production in normal and neoplastic lymph node biopsies by immunohistochemical means using specific polyclonal antisera.

View Article and Find Full Text PDF

Cyclin D1 is the regulatory subunit of certain protein kinases thought to advance the G1 phase of the cell cycle. Deregulated cyclin D1 expression has been implicated in several human neoplasms, most consistently in centrocytic B lymphoma, where the cyclin D1 gene usually has been translocated to an immunoglobulin locus. To determine directly whether constitutive cyclin D1 expression is lymphomagenic, transgenic mice were generated having the cyclin D1 gene linked to an immunoglobulin enhancer.

View Article and Find Full Text PDF

We have used a combination of classical RFLPs and PCR-based polymorphisms including CA repeats and single-strand conformation polymorphisms to generate a fine-structure genetic map of the distal long arm of chromosome 4q. This map is now genetically linked to the pre-existing anchor map of 4pter-4q31 and generates, for the first time, a complete linkage map of this chromosome. The map consists of 32 anchor loci placed with odds of greater than 1,000:1.

View Article and Find Full Text PDF

A genetic map of five polymorphic markers in the area of the facioscapulohumeral muscular dystrophy (FSHD) gene on chromosome 4q35-qter has been constructed. With these five markers, a number of recombinants have been identified that allow ordering of the marker and the disease loci. The most likely locus order and the relative position of the FSHD gene supported by the recombinants is centromere-D4S171-F11-D4S187-D4S163-D4S139-FS HD-telomere.

View Article and Find Full Text PDF

A recently identified novel mammalian cyclin (CYL1), induced by growth factors and apparently functional during the G1 phase of the cell cycle, is of potential significance, given that cell division is primarily controlled in G1. We have measured CYL1 gene expression in murine bone marrow-derived macrophages (BMM), a normal cell type dependent upon colony-stimulating factors (CSFs) for survival and proliferation. The induction of CYL1 mRNA levels correlated strongly with stimulation of DNA synthesis, since elevated CYL1 mRNA levels occurred in response to the mitogenic stimuli, CSF-1, and granulocyte/macrophage CSF, but not to nonmitogenic macrophage-activating agents.

View Article and Find Full Text PDF

To further an understanding of the mechanism of constitutional chromosomal rearrangement, the translocation breakpoints of two X-autosome translocations carried by females with Duchenne or Becker muscular dystrophy have been mapped, cloned and sequenced. Breakpoints were mapped to specific introns within the dystrophin gene and intron sequences spanning the two breakpoints were cloned and used as probes to identify DNA fragments containing the translocation junctions. The junction-containing fragments were cloned after amplification by inverse PCR or single-specific-primer PCR.

View Article and Find Full Text PDF

There are 23 females known with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X;autosome translocations that disrupt the X chromosome within band p21. A female with a t(X;4)(p21;q35) translocation was identified prenatally at routine amniocentesis. At birth, she was found to have a raised CK level, consistent with a diagnosis of Duchenne muscular dystrophy.

View Article and Find Full Text PDF

Eighty unrelated individuals with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) were found to have deletions in the major deletion-rich region of the DMD locus. This region includes the last five exons detected by cDNA5b-7, all exons detected by cDNA8, and the first two exons detected by cDNA9. These 80 individuals account for approximately 75% of 109 deletions of the gene, detected among 181 patients analyzed with the entire dystrophin cDNA.

View Article and Find Full Text PDF

Muscle-specific transcriptional regulation of DMD gene expression has been inferred from both the histopathology of the disease and, more recently, from the use of cDNA sequences to detect DMD gene transcripts by Northern blot, RNase protection, in situ hybridization, and polymerase chain reaction (PCR) analyses. Several muscle-specific genes have been shown to be transcriptionally activated early in myogenesis and a number of cis-acting promoter elements required for muscle-specific transcriptional induction have been described. In this report we review our recent progress on studies of the mechanisms underlying myogenic regulation of dystrophin gene expression.

View Article and Find Full Text PDF

There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) and its less severe form Becker muscular dystrophy (BMD) are allelic disorders. It has been suggested that in the mutations involving BMD, the translational reading frame of messenger RNA is maintained and a smaller, though partially functional, protein is produced. In order to test this, the exon-intron boundaries of the first ten exons of the DMD gene were determined, and 29 patients were analyzed.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disorder. The biochemical defect remains unknown, but the gene responsible has been mapped to band Xp21. The gene has now been cloned in two laboratories solely from knowledge of its map location.

View Article and Find Full Text PDF

The multiple copies of the human ribosomal RNA genes (rDNA) are arranged as tandem repeat clusters that map to the middle of the short arms of chromosomes 13, 14, 15, 21, and 22. Concerted evolution of the gene family is thought to be mediated by interchromosomal recombination between rDNA repeat units, but such events would also result in conservation of the sequences distal to the rDNA on these five pairs of chromosomes. To test this possibility, a DNA fragment spanning the junction between rDNA and distal flanking sequence has been cloned and characterized.

View Article and Find Full Text PDF

The gene responsible for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) maps to the X chromosome short arm, band Xp21. In a few females with DMD or BMD, the Xp21 region is disrupted by an X-autosome translocation. Accumulating evidence suggests that the exchange has physically disrupted the DMD/BMD locus to cause the disease.

View Article and Find Full Text PDF