The application of automated segmentation methods for tumor delineation on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images presents an opportunity to reduce the interobserver variability in radiotherapy (RT) treatment planning. In this work, three segmentation methods were evaluated and compared for rectal and anal cancer patients: (i) Percentage of the maximum standardized uptake value (SUV% max), (ii) fixed SUV cutoff of 2.5 (SUV2.
View Article and Find Full Text PDFTechniques for generating simplified IMRT treatment plans for treating non-small cell lung cancer (NSCLC) patients with respiratory motion were investigated. To estimate and account for respiratory motion, 4-dimensional computed tomography (4DCT) datasets from 5 patients were used to design 5-field 6-MV ungated step-and-shoot intensity modulated radiotherapy (IMRT) plans delivering a dose of 66 Gy to the planning target volume (PTV). For each patient, 2 plans were generated using the mean intensity and the maximum intensity of 10 CT datasets from different breathing phases.
View Article and Find Full Text PDFA new inverse treatment planning system (TPS) for external beam radiation therapy with high energy photons is commercially available that utilizes both dose-volume-based cost functions and a selection of cost functions which are based on biological models. The purpose of this work is to evaluate quality of intensity-modulated radiation therapy (IMRT) plans resulting from the use of biological cost functions in comparison to plans designed using a traditional TPS employing dose-volume-based optimization. Treatment planning was performed independently at two institutions.
View Article and Find Full Text PDFReducing the treatment time for IMRT patients is highly desirable. The objective of this work was to evaluate the new clinical Siemens KonRad inverse treatment planning system (TPS) and compare it to the CMS XiO TPS with special emphasis on the segmentation efficiency. For head and neck, liver and prostate cancer patients, step-and-shoot IMRT plans were designed using both CMS XiO and Siemens KonRad TPS.
View Article and Find Full Text PDFAccurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes.
View Article and Find Full Text PDFThe technology of online mega-voltage cone-beam (CB) computed tomography (MV-CBCT) imaging is currently used in many institutions to generate a 3D anatomical dataset of a patient in treatment position. It utilizes an accelerator therapy beam, delivered with 200 degrees gantry rotation, and captured by an electronic portal imager to account for organ motion and setup variations. Although the patient dose exposure from a single volumetric MV-CBCT imaging procedure is comparable to that from standard double-exposure orthogonal portal images, daily image localization procedures can result in a significant dose increase to healthy tissue.
View Article and Find Full Text PDFInitial treatment outcome data from our institution for stage I non-small cell lung cancer (NSCLC) patients have shown that sublobar resection in combination with iodine-125 (I-125) brachytherapy is associated with recurrence rates of 2.0%, compared to 18.6% with sublobar resection alone.
View Article and Find Full Text PDF