Publications by authors named "Bodil Ehlers"

Article Synopsis
  • Plant root exudates play a crucial role in nutrient acquisition, microbial partnerships, and signaling among organisms, but understanding their variation across different geographic regions has been limited.
  • A study analyzing 105 Iberian accessions of Arabidopsis thaliana identified 373 chemical compounds in root exudates and examined the genetic and environmental factors influencing this chemical diversity.
  • The research found that only a small fraction of compounds displayed significant heritability, with genome-wide association studies linking specific genetic variations to the composition of root exudates, particularly highlighting the role of terpenoids in plant defense mechanisms.
View Article and Find Full Text PDF

The thermal death time (TDT) model suggests that the duration for which an organism can tolerate thermal stress decreases exponentially as the intensity of the temperature becomes more extreme. This model has been used to predict damage accumulation in ectothermic animals and plants under fluctuating thermal conditions. However, the critical assumption of the TDT model, which is additive damage accumulation, remains unverified for plants.

View Article and Find Full Text PDF

Background: Plants exude a plethora of compounds to communicate with their environment. Although much is known about above-ground plant communication, we are only beginning to fathom the complexities of below-ground chemical communication channels. Studying root-exuded compounds and their role in plant communication has been difficult due to the lack of standardized methodologies.

View Article and Find Full Text PDF

The effect of nitrogen and glyphosate on the plant community composition was investigated in a simulated field margin ecosystem. The plant community composition was inferred from pin-point cover data using a model-based ordination method that is suited for modelling pin-point cover data. The mean structure of the ordination model is analogous to a standard linear model, which enabled us to estimate the mean effects of nitrogen and glyphosate and their interaction in the two-dimensional ordination space.

View Article and Find Full Text PDF

A central question in evolution is how several adaptive phenotypes are maintained within a species. Theory predicts that the genetic determination of a trait, and in particular the amounts of redundancy in the mapping of genotypes to phenotypes, mediates evolutionary outcomes of phenotypic selection. In Mediterranean wild thyme, numerous discrete chemical phenotypes (chemotypes) occur in close geographic proximity.

View Article and Find Full Text PDF

Loss of habitat, eutrophication and reduced grazing intensity are known drivers of landscape-level changes in plant species composition; however, consequences of the massive decline in insect abundance are still to be understood. Pollinator decline can reduce seed set in plants relying on insects for successful reproduction. This may result in a reduced recruitment of insect-pollinated plant species with associated changes in species composition.

View Article and Find Full Text PDF

Knowledge of the effect of plant secondary compounds (PSCs) on belowground interactions in the more diffuse community of species living outside the rhizosphere is sparse compared with what we know about how PSCs affect aboveground interactions. We illustrate here that PSCs from foliar tissue, root exudates, and leaf litter effectively influence such belowground plant-plant, plant-microorganism, and plant-soil invertebrate interactions. Climatic factors can induce PSC production and select for different plant chemical types.

View Article and Find Full Text PDF

Volatile monoterpenes are emitted in large quantities to both air and soil by many plant species. While studies have addressed effects of monoterpenes on aboveground invertebrates, we have much poorer understanding of the possible effects of monoterpenes on soil invertebrates. Monoterpenes play a protective role in some plant species during heat and water stress, and therefore may provide similar protection against abiotic stress to soil invertebrates.

View Article and Find Full Text PDF

Background: The gypsovag shrub Cistus clusii is locally dominant in semi-arid gypsum plant communities of North-Eastern Spain. This species commonly grows in species-poor patches even though it has nurse potential, suggesting interference on neighbouring species. Other Cistus species exert a chemically mediated interference on plant communities, suggesting that it might be a common phenomenon in this genus.

View Article and Find Full Text PDF

Gynodioecy is a sexual dimorphism where females coexist with hermaphrodite individuals. In most cases, this dimorphism involves the interaction of cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Two scenarios can account for how these interactions maintain gynodioecy.

View Article and Find Full Text PDF

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta-analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules.

View Article and Find Full Text PDF

Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting.

View Article and Find Full Text PDF

Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence.

View Article and Find Full Text PDF

The long-term maintenance of specialized mutualisms remains an evolutionary puzzle. Recent focus has been on factors governing the stability of these mutualisms, including sanctions by the host, partner choice, and coevolutionary constraint, that is, the genetic correlation (r(G)) between fitness of both partners. So far these studies have been typically carried out in a single environment.

View Article and Find Full Text PDF

Background: Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.

View Article and Find Full Text PDF

Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation.

View Article and Find Full Text PDF

The occurrence of gynodioecy among angiosperms appears to be associated with self-compatibility. We use individual-based simulations to investigate the conditions for breakdown of a gametophytic self-incompatibility system in gynodioecious populations and make a comparison with hermaphroditic populations where the conditions are well known. We study three types of mutations causing self-compatibility.

View Article and Find Full Text PDF

* Here, we evaluate the role of pollen limitation and selfing in the maintenance of labile sex expression in subdioecious plant species. * We used a literature survey to explore which factors correlated with a significant occurrence of hermaphrodites in dioecious species. We developed models to explore the selective maintenance of labile sex expression.

View Article and Find Full Text PDF

Gynodioecy is defined as the coexistence of two different sexual morphs in a population: females and hermaphrodites. This breeding system is found among many different families of angiosperms and is usually under nucleo-cytoplasmic inheritance, with maternally inherited genes causing male sterility and nuclear factors restoring male fertility. Numerous theoretical models have investigated the conditions for the stable coexistence of females and hermaphrodites.

View Article and Find Full Text PDF

Local modification of the soil environment by individual plants may affect the performance and composition of associated plant species. The aromatic plant Thymus vulgaris has the potential to modify the soil through leaching of water-soluble compounds from leaves and litter decomposition. In southern France, six different thyme chemotypes can be distinguished based on the dominant monoterpene in the essential oil, which is either phenolic or non-phenolic in structure.

View Article and Find Full Text PDF

Thymus vulgaris has a chemical polymorphism with six different chemotypes that show marked spatial segregation in nature. Although some populations have a single chemotype in majority, many have two or three chemotypes. In this study we analyze the quantitative variation among T.

View Article and Find Full Text PDF