Publications by authors named "Bockamp E"

Skeletal growth, modeling, and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In this study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1.

View Article and Find Full Text PDF

Mycoplasma infection leads to false and non-reproducible scientific data and poses a risk to human health. Despite strict guidelines calling for regular mycoplasma screening, there is no universal and widely established standard procedure. Here, we describe a reliable and cost-effective PCR method that establishes a universal protocol for mycoplasma testing.

View Article and Find Full Text PDF

Despite considerable improvement in fracture care, 5%-10% of all fractures still heal poorly or result in nonunion formation. Therefore, there is an urgent need to identify new molecules that can be used to improve bone fracture healing. One activator of the Wnt-signaling cascade, Wnt1, has recently gained attention for its intense osteoanabolic effect on the intact skeleton.

View Article and Find Full Text PDF

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester–based nanogel carrier system.

View Article and Find Full Text PDF

The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene.

View Article and Find Full Text PDF

Accumulating evidence suggests that both the nature of oncogenic lesions and the cell-of-origin can strongly influence cancer histopathology, tumor aggressiveness and response to therapy. Although oncogenic Kras expression and loss of Trp53 tumor suppressor gene function have been demonstrated to initiate murine lung adenocarcinomas (LUADs) in alveolar type II (AT2) cells, clear evidence that Club cells, representing the second major subset of lung epithelial cells, can also act as cells-of-origin for LUAD is lacking. Equally, the exact anatomic location of Club cells that are susceptible to Kras transformation and the resulting tumor histotype remains to be established.

View Article and Find Full Text PDF

The WNT/β-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a inducible transgenic mouse model targeting -expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk.

View Article and Find Full Text PDF

Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities.

View Article and Find Full Text PDF

The RAS oncogenes are frequently mutated in human cancers and among the three isoforms (, and ), is the most frequently mutated oncogene. Here, we demonstrate that a subset of flavaglines, a class of natural anti-tumour drugs and chemical ligands of prohibitins, inhibit RAS GTP loading and oncogene activation in cells at nanomolar concentrations. Treatment with rocaglamide, the first discovered flavagline, inhibited the nanoclustering of KRAS, but not HRAS and NRAS, at specific phospholipid-enriched plasma membrane domains.

View Article and Find Full Text PDF

Background & Aims: Wheat has become the world's major staple and its consumption correlates with prevalence of noncommunicable disorders such as inflammatory bowel diseases. Amylase trypsin inhibitors (ATIs), a component of wheat, activate the intestine's innate immune response via toll-like receptor 4 (TLR4). We investigated the effects of wheat and ATIs on severity of colitis and fecal microbiota in mice.

View Article and Find Full Text PDF

Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients.

View Article and Find Full Text PDF

mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygous mutations in patients with early-onset osteoporosis.

View Article and Find Full Text PDF

Targeting mRNA to eukaryotic cells is an emerging technology for basic research and provides broad applications in cancer immunotherapy, vaccine development, protein replacement, and in vivo genome editing. Although a plethora of nanoparticles for efficient mRNA delivery exists, in vivo mRNA targeting to specific organs, tissue compartments, and cells remains a major challenge. For this reason, methods for reporting the in vivo targeting specificity of different mRNA nanoparticle formats will be crucial.

View Article and Find Full Text PDF

The B16F10 murine melanoma cell line displays a low expression of MHC class I molecules favoring immune evasion and metastases in immunocompetent C57 BL/6 wild-type mice. Here, we generated metastases to the liver, an organ that is skewed towards immune tolerance, by intrasplenic injection of B16F10 cells in syngeneic C57 BL/6 compared to allogeneic Balb/c mice. Surprisingly, Balb/c mice, which usually display a pronounced M2 macrophage and Th2 T cell polarization, were ∼3 times more susceptible to metastasis than C57 BL/6 mice, despite a much higher M1 and Th1 T cell immune response.

View Article and Find Full Text PDF

The general relevance of the immune system for cancer development and therapy is increasingly recognized. However and although the immune contexture of most human cancer types has been determined, a global characterisation of the immune tumour microenvironment in hepatocellular carcinoma (HCC) is lacking. Equally, differences in the immune contexture of HCC between different patient subgroups and its effect on survival remain to be established.

View Article and Find Full Text PDF

Unlabelled: Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal.

View Article and Find Full Text PDF

Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown.

View Article and Find Full Text PDF

Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification.

View Article and Find Full Text PDF

The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis.

View Article and Find Full Text PDF

MOZ-TIF2 is a leukemogenic fusion oncoprotein that confers self-renewal capability to hematopoietic progenitor cells and induces acute myelogenous leukemia (AML) with long latency in bone marrow transplantation assays. Here, we report that FLT3-ITD transforms hematopoietic cells in cooperation with MOZ-TIF2 in vitro and in vivo. Coexpression of FLT3-ITD confers growth factor independent survival/proliferation, shortens disease latency, and results in an increase in the number of leukemic stem cells (LSC).

View Article and Find Full Text PDF

Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood-brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium.

View Article and Find Full Text PDF

Desmosomes are cell-cell adhesion sites and part of the intercalated discs, which couple adjacent cardiomyocytes. The connection is formed by the extracellular domains of desmosomal cadherins that are also linked to the cytoskeleton on the cytoplasmic side. To examine the contribution of the desmosomal cadherin desmoglein 2 to cardiomyocyte adhesion and cardiac function, mutant mice were prepared lacking a part of the extracellular adhesive domain of desmoglein 2.

View Article and Find Full Text PDF

Background: Conditional gene activation is an efficient strategy for studying gene function in genetically modified animals. Among the presently available gene switches, the tetracycline-regulated system has attracted considerable interest because of its unique potential for reversible and adjustable gene regulation.

Results: To investigate whether the ubiquitously expressed Gt(ROSA)26Sor locus enables uniform DOX-controlled gene expression, we inserted the improved tetracycline-regulated transcription activator iM2 together with an iM2 dependent GFP gene into the Gt(ROSA)26Sor locus, using gene targeting to generate ROSA26-iM2-GFP (R26t1Δ) mice.

View Article and Find Full Text PDF

Only little is known about how cells coordinately behave to establish functional tissue structure and restore microarchitecture during regeneration. Research in this field is hampered by a lack of techniques that allow quantification of tissue architecture and its development. To bridge this gap, we have established a procedure based on confocal laser scans, image processing, and three-dimensional tissue reconstruction, as well as quantitative mathematical modeling.

View Article and Find Full Text PDF