The neural cell adhesion molecule (NCAM) plays a key role in morphogenesis of the nervous system and in remodeling of neuronal connections accompanying regenerative and cognitive processes. Recently, a new synthetic ligand of NCAM, the C3-peptide, which binds to the NCAM IgI module, has been identified by means of combinatorial chemistry (Rønn, L. C.
View Article and Find Full Text PDFThe neural cell adhesion molecule, NCAM, not only plays an important role in neuronal migration, differentiation and formation of connections in the developing nervous system, but also in the condensation of the mesodermal mesenchyme of the limb bud. Therefore, NCAM may be regarded as a target molecule for preventive strategies aimed at minimizing the effects of teratogens affecting the prenatal development of the nervous system and the skeleton. Treatment of fetuses with the teratogen pyrimethamine results in a reduced body weight, microcephaly and malformations of the hind limbs and forelimbs, e.
View Article and Find Full Text PDFThe neural cell adhesion molecule (NCAM) stimulates neurite outgrowth by activating intracellular signaling cascades. We investigated the role of the transcriptional repressor HES-1 in NCAM-dependent neurite outgrowth by estimating neurite extension from PC12-E2 cells grown in coculture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with an expression plasmid encoding HES-1.
View Article and Find Full Text PDFA method was established for staining and counting of actively respiring bacteria in natural stone by using the tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) in combination with confocal laser scanning microscopy (CLSM). Applying 5 mM CTC for 2 h to pure cultures of representative stone-inhabiting microorganisms showed that chemoorganotrophic bacteria and fungi-in contrast to lithoautotrophic nitrifying bacteria-were able to reduce CTC to CTF, the red fluorescing formazan crystals of CTC. Optimal staining conditions for microorganisms in stone material were found to be 15 mM CTC applied for 24 h.
View Article and Find Full Text PDFNumerous studies have revealed distinct functions of Fos proteins in different mouse tissues and cell lines. Here, we perform a direct comparison of the features of exogenous c-Fos, Fra-1 and Fra-2 proteins expressed in murine tumor cells of epithelial origin, CSML0. Although transactivation potential of c-Fos is much stronger than that of Fra-1 and Fra-2, all three proteins are capable of modulating transcription of target genes.
View Article and Find Full Text PDFWe present a new in vitro assay for screening of potential teratogens, based on staining of cultured mouse fibroblastoid L929 cells for the determination of number of live and dead cells and of cell morphology, employing automatic video recording, followed by detection of the stained specimen and calculation of endpoint values by the use of a computerized microscope workstation. Ten different parameters were combined empirically into a single index describing general alterations in cell morphology, and, subsequently, measurements of alterations in morphology and proliferation were combined to produce a single empirical index aimed at predicting teratogenic potency. The assay was employed in two different laboratories on 10 coded compounds; 7 compounds that have demonstrated in vivo teratogenic potentials: valproic acid (VPA), pentyl-4-yn-VPA, retinoic acid (RA), 13-cis-RA, AM580, thalidomide, and alpha-EM12 and 3 compounds for which no teratogenic potential has been demonstrated: isobutyl-4-yn-VPA, phytanic acid, and beta-EM12.
View Article and Find Full Text PDFWe have recently identified a synthetic peptide, termed C3, capable of binding the first immunoglobulin-like module of neural cell adhesion molecule (NCAM) by means of combinatorial chemistry and shown that this NCAM ligand promotes neurite outgrowth. By means of single cell calcium imaging using the calcium-sensitive probe fura-2-acetomethyl ester, we here show that the C3-peptide induced an increase in intracellular calcium in primary hippocampal neurons and PC12-E2 cells, presumably requiring mobilization of calcium from both extracellular and intracellular stores. We further observed that C3-induced neurite outgrowth was inhibited by antagonists of voltage-dependent calcium channels as well as by an inhibitor of intracellular calcium mobilization, TMB-8.
View Article and Find Full Text PDFChemolithotrophic nitrite oxidizers were enriched from five different soils including freshwater marsh, permafrost, garden, agricultural, and desert soils and monitored during the cultivation procedure. Immunoblot analysis was used to identify the nitrite oxidizing organisms with monoclonal antibodies, which recognize the key enzyme of nitrite oxidation in a genus-specific reaction [Bartosch et al. (1999) Appl Environ Microbiol 65:4126-4133].
View Article and Find Full Text PDFNCAM plays a key role in neural development and plasticity-mediating cell adhesion and differentiation mainly through homophilic binding. Until recently, attempts to modulate neuronal differentiation and plasticity through NCAM have been impeded by the absence of small synthetic agonists mimicking homophilic interactions of NCAM. We show here that a peptide, P2, corresponding to a 12-amino acid sequence localized in the FG loop of the second Ig module of NCAM, binds to the first Ig module, which is the natural binding partner of the second Ig module, with an apparent K(d) of 4.
View Article and Find Full Text PDFMigration of fibroblasts from surrounding normal tissue into the wound bed is an important requirement for successful wound healing. This study investigated the motility pattern of buccal, periodontal and skin fibroblasts to determine whether differences in the wound healing efficiency at these sites can be explained by differences in the motile behavior of their respective fibroblast populations. The migratory characteristics were studied in a two-dimensional culture system.
View Article and Find Full Text PDFThe biological nitrogen cycle is a complex interplay between many microorganisms catalyzing different reactions. For a long time, ammonia and nitrite oxidation by chemolithoautotrophic nitrifiers were thought to be restricted to oxic environments and the metabolic flexibility of these organisms seemed to be limited. The discovery of a novel pathway for anaerobic ammonia oxidation by Planctomyces (anammox) and the finding of an anoxic metabolism by 'classical'Nitrosomonas-like organisms showed that this is no longer valid.
View Article and Find Full Text PDFCell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2001
Cells of Nitrosomonas eutropha strain N904 that were denitrifying under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were unable to utilize ammonium (ammonia) as an energy source. The recovery of ammonia oxidation activity was dependent on the presence of NO2. Anaerobic ammonia oxidation activity was observed in a helium atmosphere supplemented with 25 ppm NO2 after 20 h.
View Article and Find Full Text PDFThe neural cell adhesion molecule (NCAM) stimulates axonal outgrowth by activation of the Ras-mitogen activated protein kinase (MAPK) pathway and by generation of arachidonic acid. We investigated whether the transcription factors, cyclic-AMP response-element binding protein (CREB) and c-Fos play roles in this process by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in co-culture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids encoding wild-type or dominant negative forms of CREB and c-Fos or an activated form of the MAPK kinase, MEK2.
View Article and Find Full Text PDFSeveral members of the S100 family of Ca(2+) binding proteins are at present known to be secreted and to have extracellular activities. We have investigated the neurite inducing potential of extracellularly added S100A12. Human recombinant S100A12 was found to dramatically induce neuritogenesis of hippocampal cells isolated from 17 to 19 days old rat embryos.
View Article and Find Full Text PDFIntermediate filaments (IFs) compose, together with actin filaments and microtubules, the cytoskeleton and they exhibit a remarkable but still enigmatic cell-type specificity. In a number of cell types, IFs seem to be instrumental in the maintenance of the mechanical integrity of cells and tissues. The function of IFs in astrocytes has so far remained elusive.
View Article and Find Full Text PDFThe involvement of Mts1(S100A4), a small Ca(2+)-binding protein in tumor progression and metastasis had been demonstrated. However, the mechanism by which mts1(S100A4) promoted metastasis had not been identified. Here we demonstrated that Mts1(S100A4) had significant stimulatory effect on the angiogenesis.
View Article and Find Full Text PDFMicrobiology (Reading)
August 2001
The effect of acetylene ((14)C(2)H(2)) on aerobic and anaerobic ammonia oxidation by Nitrosomonas eutropha was investigated. Ammonia monooxygenase (AMO) was inhibited and a 27 kDa polypeptide (AmoA) was labelled during aerobic ammonia oxidation. In contrast, anaerobic, NO(2)-dependent ammonia oxidation (NO(2)/N(2)O(4) as oxidant) was not affected by acetylene.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2001
Cells of Nitrosomonas eutropha grown under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were initially unable to oxidize ammonia (ammonium) and hydroxylamine when transferred to oxic conditions. Recovery of ammonia and hydroxylamine oxidation activity was dependent on the presence of NO2. Under oxic conditions, without addition of NO2, ammonia consumption started after 8 - 9 days, and small amounts of NO and NO2 were detectable in the gas atmosphere.
View Article and Find Full Text PDFLaboratory and half-technical scale experiments were performed to evaluate nitric oxide (NO) and nitrogen dioxide (NO2) production during biological N-elimination from wastewater with high ammonium concentration (about 700 mg N L-1). In a laboratory scale bioreactor with biomass retention, the ammonia oxidizer Nitrosomonas europaea and the denitrifier Paracoccus denitrificans were grown as reference organisms in co-culture in order to simulate the nitrifying and denitrifying community of wastewater treatment plants. Synthetic wastewater and sludge liquor from the municipal wastewater treatment plant in Lueneburg (Germany) were used.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2001
A 41-kDa protein of Nitrosomonas eutropha was purified, and the N-terminal amino acid sequence was found to be nearly identical with the sequence of AmoB, a subunit of ammonia monooxygenase. This protein was used to develop polyclonal antibodies, which were highly specific for the detection of the four genera of ammonia oxidizers of the beta-subclass of Proteobacteria (Nitrosomonas, including Nitrosococcus mobilis, which belongs phylogenetically to Nitrosomonas; Nitrosospira; Nitrosolobus; and Nitrosovibrio). In contrast, the antibodies did not react with ammonia oxidizers affiliated with the gamma-subclass of Proteobacteria (Nitrosococcus oceani and Nitrosococcus halophilus).
View Article and Find Full Text PDFThe molecular mechanisms controlling formation and remodelling of neuronal extensions are of considerable interest for the understanding of neuronal development and plasticity. Determination of neurite outgrowth in cell culture is a widely used approach to investigate these phenomena. This is generally done by a time consuming tracing of individual neurites and their branches.
View Article and Find Full Text PDF