Publications by authors named "Bock D"

Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model.

View Article and Find Full Text PDF

Significant demand for lithium-ion batteries necessitates alternatives to Co- and Ni-based cathode materials. Cation-disordered materials using earth-abundant elements are being explored as promising candidates. In this paper, we demonstrate a coprecipitation synthetic approach that allows direct preparation of disordered rocksalt LiFeTiO (r-LFTO·C) and spinel structured hybrid LiFeTiO·C (s-LFTO·C) nanoparticles with a conformal conductive carbon coating.

View Article and Find Full Text PDF

Stroke is one of the leading causes of chronic disability in humans. It has been proposed that the endogenous neural stem/progenitor cells generate new neurons in the damaged area. Still, the contribution of these cells is negligible because a low number of newborn mature neurons are formed.

View Article and Find Full Text PDF

The aqueous zinc-sulfur battery holds promise for significant capacity and energy density with low cost and safe operation based on environmentally benign materials. However, it suffers from the sluggish kinetics of the conversion reaction. Here, we highlight the efficacy of molybdenum(IV) sulfide (MoS) to reduce the overpotential of S-ZnS conversion in aqueous electrolytes and study the discharge products formed at the solid-solid and solid-liquid interfaces using experimental and theoretical approaches.

View Article and Find Full Text PDF

Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the fruit fly Drosophila melanogaster as a crucial model in neuroscience, aided by extensive resources like the FlyWire whole-brain connectome and a hierarchical annotation of neuron classes and types.
  • The study reveals 8,453 annotated cell types, with 4,581 being newly identified, highlighting the complexity of the fly brain and emphasizing the difficulty in reidentifying some hemibrain cell types in FlyWire.
  • A new definition of cell type is proposed based on cell similarities across different brains, and the study illustrates findings related to neuron connectivity, structural stability, and a consensus atlas for the fly brain's neuroanatomy, supporting future comparative studies.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers have created a detailed neuronal wiring diagram of the whole brain of a fruit fly (Drosophila melanogaster), mapping over 5 billion chemical synapses between more than 139,000 neurons, to better understand brain function.
  • The study includes detailed annotations about various cell types, nerve pathways, and neurotransmitter identities, and the data is freely available for other researchers to use and explore.
  • By analyzing synaptic pathways and connections, the project helps illustrate how neural structures relate to sensorimotor behaviors, paving the way for similar studies in other species.
View Article and Find Full Text PDF

Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain.

View Article and Find Full Text PDF

Objective: To compare long-term outcomes after laparoscopic lavage with resection surgery for perforated diverticulitis, Hinchey grade III as practiced in Sweden for 3 years.

Background: Laparoscopic lavage has been studied in 3 randomized controlled trials. Long-term results indicate that additional surgery and a remaining stoma are less common after lavage compared with resection, but data from routine care and larger cohorts are needed to get a more complete picture.

View Article and Find Full Text PDF

The success of prime editing depends on the prime editing guide RNA (pegRNA) design and target locus. Here, we developed machine learning models that reliably predict prime editing efficiency. PRIDICT2.

View Article and Find Full Text PDF

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex.

View Article and Find Full Text PDF

Background: Stress negatively affects well-being, relating to poor physical, emotional, and occupational outcomes for health care personnel. Health care professionals faced extreme stressors in the context of the COVID-19 pandemic, making occupational stress relief a top priority for hospital administrators. Many health systems employ specially trained spiritual support staff as one strategy to alleviate work-related stressors.

View Article and Find Full Text PDF

Background: High rates of negative intrusive thoughts have been reported among cancer patients. Prevalent users of beta-blocker therapy have reported lower levels of cancer related intrusive thoughts than non-user. The aim of this study is to investigate if initiation of beta-blocker therapy reduces the prevalence and severity of intrusive thoughts (co-primary endpoints) and the prevalence of anxiety, depressed mood, and low quality of life (secondary endpoints) in cancer survivors.

View Article and Find Full Text PDF

Surgical correction of severe mitral regurgitation (MR) can reverse left ventricular (LV) remodeling in patients with mitral valve prolapse (MVP). However, whether this process is similar to the case in Barlow's Disease (BD) and Fibro-elastic Deficiency (FED) is currently unknown. The aim of this study is to evaluate post-operative LV reverse remodeling and function in patients with BD versus FED.

View Article and Find Full Text PDF

Motor neurons are the final common pathway through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster.

View Article and Find Full Text PDF

Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models.

View Article and Find Full Text PDF

Prime editing is a highly versatile genome editing technology that enables the introduction of base substitutions, insertions, and deletions. However, compared to traditional Cas9 nucleases prime editors (PEs) are less active. In this study we use OrthoRep, a yeast-based platform for directed protein evolution, to enhance the editing efficiency of PEs.

View Article and Find Full Text PDF

Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important.

View Article and Find Full Text PDF

Background: The aim of this study was to determine if minimally invasive surgery (MIS) for rectal cancer is non-inferior to open surgery (OPEN) regarding adequacy of cancer resection in a population based setting.

Methods: All 9,464 patients diagnosed with rectal cancer 2012-2018 who underwent curative surgery were included from the Swedish Colorectal Cancer Registry.

Primary Outcomes: Positive circumferential resection margin (CRM < 1 mm) and positive resection margin (R1).

View Article and Find Full Text PDF

Background: Evidence-based recommendations for antithrombotic treatment in patients who have an indication for oral anticoagulation (OAC) after transcatheter edge-to-edge mitral valve repair (TEER) are lacking.

Aims: To compare bleeding and thrombotic risk for different antithrombotic regimens post-TEER with MitraClip in an unselected population with the need for OACs.

Methods: Bleeding and thrombotic complications (stroke and myocardial infarction) up to 3 months after TEER with mitraclip were evaluated in 322 consecutive pts with an indication for OACs.

View Article and Find Full Text PDF

A primary cilium is a thin membrane-bound extension off a cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. While many cell types have a primary cilium, little is known about primary cilia in the brain, where they are less accessible than cilia on cultured cells or epithelial tissues and protrude from cell bodies into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex.

View Article and Find Full Text PDF

Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. , the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies.

View Article and Find Full Text PDF