Publications by authors named "Bochar D"

Using dasatinib linked to E3 ligase ligands, we identified a potent and selective dual Csk/c-Src PROTAC degrader. We then replaced dasatinib, the c-Src-directed ligand, with a conformation-selective analogue that stabilizes the αC-helix-out conformation of c-Src. Using the αC-helix-out ligand, we identified a PROTAC that is potent and selective for c-Src.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents.

View Article and Find Full Text PDF

Manley and co-workers provide data demonstrating that, at super-pharmacological concentrations (300 μM), a ternary complex between Abl, asciminib, and ATP-competitive inhibitors is possible. The work in our manuscript concerns the interplay of asciminib (and GNF-2) with ATP-competitive inhibitors at pharmacologically relevant concentrations (C =1.6-3.

View Article and Find Full Text PDF

Allosteric inhibitors of Abl kinase are being explored in the clinic, often in combination with ATP-site inhibitors of Abl kinase. However, there are conflicting data on whether both ATP-competitive inhibitors and myristoyl-site allosteric inhibitors can simultaneously bind Abl kinase. Here, we determine whether there is synergy or antagonism between ATP-competitive inhibitors and allosteric inhibitors of Abl.

View Article and Find Full Text PDF

The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by the formation of hyperphosphorylated tau, leading to neurofibrillary tangles that contribute to cognitive decline.
  • Researchers developed a recombinant form of hyperphosphorylated tau (p-tau) that spontaneously forms toxic fibrils and induces cell death without needing aggregation inducers.
  • The study indicates that p-tau serves as a valuable resource for understanding AD mechanisms and may help in the search for potential therapeutic drugs.
View Article and Find Full Text PDF

The androgen receptor (AR) mediates the effect of androgens through its transcriptional function during both normal prostate development and in the emergence and progression of prostate cancer. AR is known to assemble coactivator complexes at target promoters to facilitate transcriptional activation in response to androgens. Here we identify the ATP-dependent chromatin remodeling factor chromodomain helicase DNA-binding protein 8 (CHD8) as a novel coregulator of androgen-responsive transcription.

View Article and Find Full Text PDF

Chromodomain, helicase, DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin remodeling enzyme that has been demonstrated to exist within a large protein complex which includes WDR5, Ash2L, and RbBP5, members of the Mixed Lineage Leukemia (MLL) histone modifying complexes. Here we show that CHD8 relocalizes to the promoter of the MLL regulated gene HOXA2 upon gene activation. Depletion of CHD8 enhances HOXA2 expression under activating conditions.

View Article and Find Full Text PDF

Flowcytometric procedures provide distinct advantages over the colorimetric methods currently in use to monitor erythrocytes for exposure of patients to organophosphorus (OP) pesticides and chemical warfare agents; therefore, they warrant exploration. Two types of fluorescent probes-one to detect the total acetylcholinesterase on erythrocytes (RBC-AChE) and the other to distinguish between the active and OP-inhibited RBC-AChE-have been explored. Our studies demonstrate that a fluorescently conjugated fasciculin can be used to monitor total, active, and OP-inhibited RBC-AChE.

View Article and Find Full Text PDF

ATP-dependent chromatin remodeling by the CHD family of proteins plays an important role in the regulation of gene transcription. Here we report that full-length CHD8 interacts directly with beta-catenin and that CHD8 is also recruited specifically to the promoter regions of several beta-catenin-responsive genes. Our results indicate that CHD8 negatively regulates beta-catenin-targeted gene expression, since short hairpin RNA against CHD8 results in the activation of several beta-catenin target genes.

View Article and Find Full Text PDF

Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme in raphe serotonin biosynthesis, and polymorphisms of TPH2 are implicated in vulnerability to psychiatric disorders. Dynamic transcription regulation of TPH2 may underlie differences in vulnerability. We identified a transcription element in the TPH2 promoter that resembles the binding motif for RE-1 silencer of transcription (REST; also known as NRSF) transcription factor.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors are a promising class of anticancer agents for the treatment of solid and hematological malignancies. The precise mechanism by which HDAC inhibitors mediate their effects on tumor cell growth, differentiation, and/or apoptosis is the subject of intense research. Previously we described a family of multiprotein complexes that contain histone deacetylase 1/2 (HDAC1/2) and the histone demethylase BHC110 (LSD1).

View Article and Find Full Text PDF

p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. Although little is known about the biochemical functions of 53BP1, the protein possesses several motifs that are likely important for its role as a DNA damage response element. This includes two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites.

View Article and Find Full Text PDF

Nucleosomal DNA is arranged in a higher-order structure that presents a barrier to most cellular processes involving protein DNA interactions. The cellular machinery involved in sister chromatid cohesion, the cohesin complex, also requires access to the nucleosomal DNA to perform its function in chromosome segregation. The machineries that provide this accessibility are termed chromatin remodelling factors.

View Article and Find Full Text PDF

BRAF35, a structural DNA-binding protein, initially was identified as a component of a large BRCA2-containing complex. Biochemical analysis revealed the presence of a smaller core-BRAF35 complex devoid of BRCA2. Here we report the isolation of a six-subunit core-BRAF35 complex with the capacity to deacetylate histones, termed the BRAF-histone deacetylase complex (BHC), from human cells.

View Article and Find Full Text PDF

Germline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BRCA2-Associated Factor 35 (BRAF35).

View Article and Find Full Text PDF

Germline mutations in the tumor suppressor gene, BRCA1, predispose individuals to breast and ovarian cancers. Using a combination of affinity- and conventional chromatographic techniques, we have isolated a predominant form of a multiprotein BRCA1-containing complex from human cells displaying chromatin-remodeling activity. Mass spectrometric sequencing of components of this complex indicated that BRCA1 is associated with a SWI/SNF-related complex.

View Article and Find Full Text PDF

Chromatin remodeling complexes have been implicated in the disruption or reformation of nucleosomal arrays resulting in modulation of transcription, DNA replication, and DNA repair. Here we report the isolation of WCRF, a new chromatin-remodeling complex from HeLa cells. WCRF is composed of two subunits, WCRF135, the human homolog of Drosophila ISWI, and WCRF180, a protein related to the Williams syndrome transcription factor.

View Article and Find Full Text PDF

Sequence analysis has revealed two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Crystal structures of ternary complexes of the Class II enzyme from Pseudomonas mevalonii revealed lysine 267 critically positioned at the active site. This observation suggested a revised catalytic mechanism in which lysine 267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA and subsequently of bound mevaldehyde, an inference supported by mutagenesis of lysine 267 to aminoethylcysteine.

View Article and Find Full Text PDF

The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli.

View Article and Find Full Text PDF

The biodegradative 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase of Pseudomonas mevalonii catalyzes the NAD(+)-dependent conversion of (S)-HMG-CoA to (R)-mevalonate. Crystallographic analysis of abortive ternary complexes of this enzyme revealed lysine 267 located at a position in the active site, suggesting that it might serve as the general acid/base for catalysis. Site-directed mutagenesis and subsequent chemical derivatization were therefore employed to investigate this active site lysine.

View Article and Find Full Text PDF

3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the rate-limiting enzyme and the first committed step in the biosynthesis of cholesterol in mammals. We have determined the crystal structures of two nonproductive ternary complexes of HMG-CoA reductase, HMG-CoA/NAD+ and mevalonate/NADH, at 2.8 A resolution.

View Article and Find Full Text PDF

Cyclin-dependent kinase 7 (CDK7) can be isolated as a subunit of a trimeric kinase complex functional in activation of the mitotic promoting factor. In this study, we demonstrate that the trimeric cdk-activating kinase (CAK) acts as a transcriptional repressor of class II promoters and show that repression results from CAK impeding the entry of RNA polymerase II and basal transcription factor IIF into a competent preinitiation complex. This repression is independent of CDK7 kinase activity.

View Article and Find Full Text PDF

Both in eukaryotes and in archaebacteria the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (E.C. 1.

View Article and Find Full Text PDF