Publications by authors named "Bocchi V"

While clinical trials are ongoing using human pluripotent stem cell-derived midbrain dopamine (mDA) neuron precursor grafts in Parkinson's disease (PD), current protocols to derive mDA neurons remain suboptimal. In particular, the yield of TH+ mDA neurons after grafting and the expression of some mDA neuron and subtype-specific markers can be further improved. For example, characterization of mDA grafts by single cell transcriptomics has yielded only a small proportion of mDA neurons and a considerable fraction of contaminating cell populations.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) leads to the degeneration of specific brain neurons, resulting in a mix of functional and dysfunctional cells, but the interactions between these cell types are not well understood.
  • Researchers created brain organoids containing both healthy and HD cells, finding that HD organoids displayed neurodevelopmental issues and fewer GABAergic neurons compared to healthy ones.
  • Healthy cells in mixed organoids helped to restore the identity and function of HD cells through direct interactions, suggesting that enhancing communication between different cell types could offer new treatment strategies for HD.
View Article and Find Full Text PDF

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a protocol for engineering striatal medium spiny neurons (MSNs) from human pluripotent stem cells (PSCs), which could be useful for understanding and treating neurological diseases, particularly Huntington's disease (HD).
  • The protocol achieves high reproducibility and generates functional D1- and D2-MSNs in just 25 days by carefully modulating cell density and specific morphogens.
  • Single-cell RNA sequencing confirms that these engineered cells resemble natural fetal MSNs in terms of gene expression and development, and adjustments to the midkine pathway can enhance MSN production.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are creating human telencephalic organoids from stem cells to better understand developmental processes related to uniquely human behaviors and disorders.
  • These organoids show complex organization with various types of neural cells, allowing for detailed study of excitatory and inhibitory neuron development.
  • The study also reveals specific deficits in organoids with a deletion of the SHANK3 gene, which is linked to autism and intellectual disabilities, highlighting the usefulness of these organoids for investigating neurological issues.
View Article and Find Full Text PDF

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers compiled a catalog of 1116 lincRNAs and profiled nearly 100,000 single cells from the early human fetal striatum, revealing that D1 and D2 medium spiny neurons arise from a shared progenitor during the developmental phase.
  • * The findings highlight distinct gene regulatory networks for different cell types and identify human-specific lincRNAs that play a role in the unique evolution of the striatum in humans.
View Article and Find Full Text PDF

A variety of pathophysiological mechanisms are implicated in Huntington's disease (HD). Among them, reduced cholesterol biosynthesis has been detected in the HD mouse brain from pre-symptomatic stages, leading to diminished cholesterol synthesis, particularly in the striatum. In addition, systemic injection of cholesterol-loaded brain-permeable nanoparticles ameliorates synaptic and cognitive function in a transgenic mouse model of HD.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers explored using human embryonic stem cells to replace damaged cells in HD, and successfully demonstrated that these cells could integrate into the brain and form connections in a rat model.
  • * Their findings also showed that these transplanted cells improved the rats' sensory-motor tasks for up to two months, highlighting a promising therapeutic potential for this treatment method.
View Article and Find Full Text PDF

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate.

View Article and Find Full Text PDF

Increasing evidence suggests that early neurodevelopmental defects in Huntington's disease (HD) patients could contribute to the later adult neurodegenerative phenotype. Here, by using HD-derived induced pluripotent stem cell lines, we report that early telencephalic induction and late neural identity are affected in cortical and striatal populations. We show that a large CAG expansion causes complete failure of the neuro-ectodermal acquisition, while cells carrying shorter CAGs repeats show gross abnormalities in neural rosette formation as well as disrupted cytoarchitecture in cortical organoids.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a post-natal neurological disorder that represents the second most common cause for mental retardation. The presence of cold hands and feet, and blue, a feature frequently observed in these patients, is one of the non-neurological phenotypes that characterizes RTT, up to now not well explained. We have performed videocapillaroscopy in subjects affected by Rett syndrome.

View Article and Find Full Text PDF

The purpose of this case report is to increase the knowledge about bone metastatic pattern in gastric cancer. A 59-year-old man presented with headache three years after a total gastrectomy for signet-ring cell carcinoma. Head computed tomography and magnetic resonance imaging showed multiple osteolytic lesions of the cranial vault and base, consistent with metastatic or haematological disease.

View Article and Find Full Text PDF

Raynaud?s phenomenon (RP) and cutaneous fibrosis are the distinctive manifestations of scleroderma, in which Endothelin-1 plays a fundamental pathogenetic role. Bosentan, an Endothelin-1 receptor antagonist used for the treatment of pulmonary arterial hypertension, retards the beginning of new sclerodermic digital ulcers (DU). This open-label, observational, retrospective study verified the effect of Bosentan on RP and skin fibrosis in sclerodermic outpatients affected by pulmonary arterial hypertension without DU.

View Article and Find Full Text PDF

A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested.

View Article and Find Full Text PDF