Bioengineered materials represent an innovative option to support the regenerative processes of damaged tissues, with the final objective of creating a functional environment closely mimicking the native tissue. Among the different available biomaterials, hydrogels represent the solution of choice for tissue regeneration, thanks to the easy synthesis process and the highly tunable physical and mechanical properties. Moreover, hydrogels are biocompatible and biodegradable, able to integrate in biological environments and to support cellular interactions in order to restore damaged tissues' functionality.
View Article and Find Full Text PDFMedical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents.
View Article and Find Full Text PDFIn the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation.
View Article and Find Full Text PDFMultiscale agent-based modeling frameworks have recently emerged as promising mechanobiological models to capture the interplay between biomechanical forces, cellular behavior, and molecular pathways underlying restenosis following percutaneous transluminal angioplasty (PTA). However, their applications are mainly limited to idealized scenarios. Herein, a multiscale agent-based modeling framework for investigating restenosis following PTA in a patient-specific superficial femoral artery (SFA) is proposed.
View Article and Find Full Text PDFMatrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine.
View Article and Find Full Text PDFA previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW).
View Article and Find Full Text PDFBitter taste receptors are involved not only in taste perception but in various physiological functions as their anatomical location is not restricted to the gustatory system. We previously demonstrated expression and activity of the subtype hTAS2R46 in human airway smooth muscle and broncho-epithelial cells, and here we show its expression and functionality in human skeletal muscle cells. Three different cellular models were used: micro-dissected human skeletal tissues, human myoblasts/myotubes and human skeletal muscle cells differentiated from urine stem cells of healthy donors.
View Article and Find Full Text PDFThe clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use.
View Article and Find Full Text PDFHypothesis: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e.
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
December 2023
Introduction: The Anatomage Table is a modern device characterized by virtual reality functionality that may be used to enhance the teaching of human anatomy to medical and allied health students. The purpose of the present study was to use the virtual dissection table (3D Anatomage) as an additional tool for education and information in cases of metastases to the oral region.
Materials And Methods: The hospital database of Vercelli Hospital, Vercelli, Italy, was searched for metastases to the oral region.
There is an increase of application of Nickel in the form of nanoparticles (NiNPs) in several fields including modern metallurgy, bioengineering, and medicine. Such growth of the areas of application is actually accompanied with an increase of exposure to Nickel, thus an intensification of the negative effects, the most frequent being the allergic contact dermatitis. Indeed, due to their smaller size, and therefore their higher surface area, NiNPs can release more Ni ions compared to bulk material, that can penetrate and permeate through the skin.
View Article and Find Full Text PDFCells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation.
View Article and Find Full Text PDFRecent advancements in regenerative medicine have enhanced the development of biomaterials as multi-functional dressings, capable of accelerating wound healing and addressing the challenge of chronic wounds. Hydrogels obtained from decellularized tissues have a complex composition, comparable to the native extracellular environment, showing highly interesting characteristics for wound healing applications. In this study, a bovine pericardium decellularized extracellular matrix (dECM) hydrogel was characterized in terms of macromolecules content, and its immunomodulatory, angiogenic and wound healing potential has been evaluated.
View Article and Find Full Text PDFThe key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD.
View Article and Find Full Text PDFMuscular diseases are characterized by a wide genetic diversity and the Ca-signalling machinery is often perturbed. Its characterization is therefore pivotal and requires appropriate cellular models. Muscle biopsies are the best approach but are invasive for the patient and difficult to justify if the biopsy is not for diagnostic purposes.
View Article and Find Full Text PDFCardiovascular diseases (CVDs), mainly ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and major contributors to disability worldwide. Despite their heterogeneity, almost all CVDs share a common feature: the endothelial dysfunction. This is defined as a loss of functionality in terms of anti-inflammatory, anti-thrombotic and vasodilatory abilities of endothelial cells (ECs).
View Article and Find Full Text PDFGlycosyl-ation is the process of combining one or more glucose molecules (or other monosaccharides) with molecules of a different nature (which are therefore glycosyl-ated). In biochemistry, glycosyl-ation is catalyzed by several specific enzymes, and assumes considerable importance since it occurs mainly at the expense of proteins and phospho-lipids which are thus transformed into glycoproteins and glycolipids. Conversely, in diabetes and aging, glycation of proteins is a phenomenon of non-enzymatic nature and thus not easily controlled.
View Article and Find Full Text PDFSkeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting.
View Article and Find Full Text PDFDiseases like widespread diabetes or rare galactosemia may lead to high sugar concentrations in the human body, thereby promoting the formation of glycoconjugates. Glycation of collagen, the formation of glucose bridges, is nonenzymatic and therefore cannot be prevented in any other way than keeping the sugar level low. It relates to secondary diseases, abundantly occurring in aging populations and diabetics.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD).
View Article and Find Full Text PDFCeliac disease (CD) is a complex immune-mediated chronic disease characterized by a consistent inflammation of the gastrointestinal tract induced by gluten intake in genetically predisposed individuals. Although initiated by the interaction between digestion-derived gliadin, a gluten component, peptides, and the intestinal epithelium, the disorder is highly complex and involving other components of the intestine, such as the immune system. Therefore, conventional model systems, mainly based on two- or three-dimension cell cultures and co-cultures, cannot fully recapitulate such a complex disease.
View Article and Find Full Text PDFIn the field of artificial prostheses for damaged vessel replacement, polymeric scaffolds showing the right combination of mechanical performance, biocompatibility, and biodegradability are still demanded. In the present work, poly(butylene-co-triethylene -1,4-cyclohexanedicarboxylate), a biodegradable random aliphatic copolyester, has been synthesized and electrospun in form of aligned and random fibers properly designed for vascular applications. The obtained materials were analyzed through tensile and dynamic-mechanical tests, the latter performed under conditions simulating the mechanical contraction of vascular tissue.
View Article and Find Full Text PDFHydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body's tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth.
View Article and Find Full Text PDFTransforming growth factor β (TGF-β) superfamily signaling pathways are ubiquitous and essential for several cellular and physiological processes. The overexpression of TGF-β results in excessive fibrosis in multiple human disorders. Among them, stiff skin syndrome (SSS) is an ultrarare and untreatable condition characterized by the progressive thickening and hardening of the dermis, and acquired joint limitations.
View Article and Find Full Text PDF