Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDFBiodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering.
View Article and Find Full Text PDFIntroduction: The incorporation of trace elements such as strontium (Sr) and copper (Cu) in the composition of mesoporous bioactive glass (MBG) is widely known to enhance its biological functionality for bone tissue regeneration METHODS: Two MBG powders with the composition 80SiO-11CaO-5PO-xCuO/SrO, one doped with 4 mol.% of CuO, the second with 4 mol.% of SrO were blended in the weight ratios of Cu-MBG: Sr-MBG; 100:0, 70: 30, 50: 50, 30: 70 and 0:100 aiming at minimizing Cu to minimize the cytotoxicity of Cu while preserving its antimicrobial activity.
View Article and Find Full Text PDFAstaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others.
View Article and Find Full Text PDFThe rubber elasticity theory has been lengthily applied to several polymeric hydrogel substances and upgraded from idealistic models to consider imperfections in the polymer network. The theory relies solely on hyperelastic material models in order to provide a description of the elastic polymer network. While this is also applicable to polymer gels, such hydrogels are rather characterized by their water content and visco-elastic mechanical properties.
View Article and Find Full Text PDFPeriodontal tissue defects are a leading cause of tooth loss in adults. Guided tissue regeneration (GTR) has emerged as an effective clinical approach for promoting periodontal regeneration. In this study, we employed a green electrospinning technology to combine recombinant human-like collagen (RHC) with polycaprolactone (PCL) to fabricate RHC/PCL membranes for periodontal regeneration.
View Article and Find Full Text PDFImmune-involved cell communications have recently been introduced as key role players in the fate of mesenchymal stem cells in making bone tissue. In this study, a drug delivery system for bone (re)generation based on copper-doped mesoporous bioactive glass nanoparticles (BGNPs) was developed to codeliver copper as a biologically active ion and icariin as an anti-inflammatory agent. This design was based on temporal inflammation fluctuations from proinflammatory to anti-inflammatory during bone generation.
View Article and Find Full Text PDFHyaluronic acid (HA), an FDA-approved natural polymer and important component of the extracellular matrix (ECM), has been widely used to develop hydrogels for cartilage regeneration. However, HA hydrogels often exhibit poor mechanical properties and unsuitable degradability, limiting their capability to support cell growth in cartilage. To overcome these challenges, this study modifies HA with a silica precursor and the coupling agent (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) to develop a monophasic organic-inorganic hybrid HA-silica hydrogel.
View Article and Find Full Text PDFUnder 3D culture conditions, cells tend to spread, migrate, and proliferate better in more viscoelastic and plastic hydrogels. Here, we present evidence that the improved cell behavior is facilitated by the lower steric hindrance of a more viscoelastic and plastic matrix with weaker intermolecular bonds. To determine intermolecular bond stability, we slowly insert semispherical tipped needles (100-700 μm diameter) into alginate dialdehyde-gelatin hydrogels and measure stiffness, yield strength, plasticity, and the force at which the surface ruptures (puncture force).
View Article and Find Full Text PDFNanocomposite hydrogels are suitable in bone tissue engineering due to their resemblance with the extracellular matrix, ability to match complex geometries, and ability to provide a framework for cell attachment and proliferation. The nanocomposite hydrogel comprises organic and inorganic counterparts. Gelatin methacrylate (GELMA) is an extensively used organic biomaterial in tissue engineering due to its excellent biocompatibility, biodegradability, and bioactivity.
View Article and Find Full Text PDFThe regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth.
View Article and Find Full Text PDFBacterial infectious diseases remain one of the significant challenges in the field of bone regeneration applications. Despite the development of new antibiotics, their improper administration has led to the development of multiresistant bacterial strains. In this study, we proposed a novel approach to tackle this problem by loading clove oil (CLV), a natural antibacterial compound, into amino-functionalized mesoporous bioactive glass nanoparticles (MBGNs).
View Article and Find Full Text PDFDespite advances in treatment modalities, bone tumour therapies still face significant challenges. Severe side effects of conventional approaches, such as chemo- and radiation therapy, result in poor survival rates and high tumour recurrence rates, which are the most common issues that need to be improved upon. The aim of this study was to evaluate the therapeutic properties of 45S5 bioactive glass (BG) for targeting bone tumours.
View Article and Find Full Text PDFGlaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains.
View Article and Find Full Text PDFThis study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples.
View Article and Find Full Text PDFThe electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration.
View Article and Find Full Text PDFThis study focuses on developing hybrid scaffolds incorporating phytotherapeutic agents via a combination of three-dimensional (3D) printing and electrospinning to enhance mechanical properties and provide antibacterial activity, in order to address the limitations of traditional antibiotics. In this regard, 3D-printed polycaprolactone (PCL) struts are first fabricated using fused deposition modeling (FDM). Then, alkaline surface treatment is applied to improve the adhesion of electrospun nanofibers.
View Article and Find Full Text PDFBiomaterials intended for application in bone tissue engineering (BTE) ideally stimulate osteogenesis and angiogenesis simultaneously, as both mechanisms are of critical importance for successful bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNs) can be tailored towards specific biological needs, for example by addition of ions like Molybdenum (Mo). While Mo has been shown to enhance osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as their ability to form and mature a primitive osseous extracellular matrix (ECM), there are contradictory findings regarding its impact on angiogenesis.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2024
Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required.
View Article and Find Full Text PDFObjective: Calcium silicate cements (CSCs) are often used in endodontics despite some limitations related to their physical properties and antibacterial efficacy. This study aimed to develop and demonstrate the viability of a series of CSCs that were produced by sol-gel method and further modified with mesoporous bioactive glass nanoparticles (MBGNs) and collagen, for endodontic therapy.
Methods: Calcium silicate (CS) particles and MBGNs were synthesized by the sol-gel method, and their elemental, molecular, and physical microstructure was characterized.
Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic--glycolic acid) (PLGA) ribbon surfaces.
View Article and Find Full Text PDFElectrospinning is a versatile and straightforward technique to produce nanofibrous mats with different morphologies. In addition, by optimizing the solution, processing, and environmental parameters, three-dimensional (3D) nanofibrous scaffolds can also be created using this method. In this work, the preparation and characterization of bioactive glass (BG) scaffolds based on the SiO-CaO sol-gel system, a biomaterial with a highly reactive surface, is reported.
View Article and Find Full Text PDFThe borosilicate 0106-B1-bioactive glass (BG) composition (in wt%: 37.5 SiO, 22.6 CaO, 5.
View Article and Find Full Text PDF