The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination.
View Article and Find Full Text PDFThe current poxvirus vaccine is associated with rare, but serious adverse events. Therefore, we investigated a non-replicating approach to vaccine design. Peptides encoding potential HLA-binding motifs were derived from the orthopoxvirus genes, D8L, A27L, and C12L (the IL-18-binding protein [vIL18BP105]), all of which are preserved among poxviruses that infect humans, and which may be a target of host immunity.
View Article and Find Full Text PDF