Publications by authors named "Bobrovskiy D"

Across biological systems, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. While low-dimensional dynamics can be extracted using RNA velocity, these algorithms can be fragile and rely on heuristics lacking statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold.

View Article and Find Full Text PDF

The maintenance of plasma pH is critical for life in all organisms. The kidney plays a critical role in acid-base regulation in vertebrates by controlling the plasma concentration of bicarbonate. The receptor tyrosine kinase IRR (insulin receptor-related receptor) is expressed in renal β-intercalated cells and is involved in alkali sensing due to its ability to autophosphorylate under alkalization of extracellular medium (pH > 7.

View Article and Find Full Text PDF

Glucose and lipid metabolism are crucial functional systems in eukaryotes. A large number of experimental studies both in animal models and humans have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. Previously, human lncRNA DEANR1/linc00261 was described as a tumor suppressor that regulates a variety of biological processes such as cell proliferation, apoptosis, glucose metabolism and tumorigenesis.

View Article and Find Full Text PDF

Fluoxetine is an antidepressant commonly prescribed not only to adults but also to children for the treatment of depression, obsessive-compulsive disorder, and neurodevelopmental disorders. The adverse effects of the long-term treatment reported in some patients, especially in younger individuals, call for a detailed investigation of molecular alterations induced by fluoxetine treatment. Two-year fluoxetine administration to juvenile macaques revealed effects on impulsivity, sleep, social interaction, and peripheral metabolites.

View Article and Find Full Text PDF

Motivation: Epistasis, the context-dependence of the contribution of an amino acid substitution to fitness, is common in evolution. To detect epistasis, fitness must be measured for at least four genotypes: the reference genotype, two different single mutants and a double mutant with both of the single mutations. For higher-order epistasis of the order n, fitness has to be measured for all 2n genotypes of an n-dimensional hypercube in genotype space forming a "combinatorially complete dataset".

View Article and Find Full Text PDF