Publications by authors named "Bobby Lucero"

The proteasome is essential for eukaryotic cell proteostasis, and inhibitors of the 20S proteasome are progressing preclinically and clinically as antiparasitics. We screened, the causative agent of human and animal African trypanosomiasis, with a set of 27 carmaphycin B analogs, irreversible epoxyketone inhibitors that were originally developed to inhibit the20S (Pf20S). The structure-activity relationship was distinct from that of the human c20S antitarget by the acceptance of d-amino acids at the P3 position of the peptidyl backbone to yield compounds with greatly decreased toxicity to human cells.

View Article and Find Full Text PDF

The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity.

View Article and Find Full Text PDF

Introduction: Intraneuronal inclusions composed of tau protein are found in Alzheimer's disease (AD) and other tauopathies. Tau normally binds microtubules (MTs), and its disengagement from MTs and misfolding in AD is thought to result in MT abnormalities. We previously identified triazolopyrimidine-containing MT-stabilizing compounds that provided benefit in AD mouse models and herein describe the characterization and efficacy testing of an optimized candidate, CNDR-51997.

View Article and Find Full Text PDF

Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T.

View Article and Find Full Text PDF

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies.

View Article and Find Full Text PDF

The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers.

View Article and Find Full Text PDF

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT- active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for pharmacokinetics (PK), tolerability and efficacy studies.

View Article and Find Full Text PDF

Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (, the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs.

View Article and Find Full Text PDF

Studies in tau and Aβ plaque transgenic mouse models demonstrated that brain-penetrant microtubule (MT)-stabilizing compounds, including the 1,2,4-triazolo[1,5-]pyrimidines, hold promise as candidate treatments for Alzheimer's disease and related neurodegenerative tauopathies. Triazolopyrimidines have already been investigated as anticancer agents; however, the antimitotic activity of these compounds does not always correlate with stabilization of MTs in cells. Indeed, previous studies from our laboratories identified a critical role for the fragment linked at C6 in determining whether triazolopyrimidines promote MT stabilization or, conversely, disrupt MT integrity in cells.

View Article and Find Full Text PDF

The 1,2,4-triazolo[1,5-a]pyrimidine (TP) heterocycle, in spite of its relatively simple structure, has proved to be remarkably versatile as evidenced by its use in many different applications reported over the years in different areas of drug design. For example, as the ring system of TPs is isoelectronic with that of purines, this heterocycle has been proposed as a possible surrogate of the purine ring. However, depending on the choice of substituents, the TP ring has also been described as a potentially viable bio-isostere of the carboxylic acid functional group and of the N-acetyl fragment of ε-N-acetylated lysine.

View Article and Find Full Text PDF