Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature.
View Article and Find Full Text PDFWe describe the first implementation of broadband, nanosecond time-resolved step-scan Fourier transform infrared (S-FT-IR) spectroscopy at a pulse radiolysis facility. This new technique allows the rapid acquisition of nano- to microsecond time-resolved infrared (TRIR) spectra of transient species generated by pulse radiolysis of liquid samples at a pulsed electron accelerator. Wide regions of the mid-infrared can be probed in a single experiment, which often takes < 20-30 min to complete.
View Article and Find Full Text PDFWhen coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult.
View Article and Find Full Text PDFUsing a new technique, which combines pulse radiolysis with nanosecond time-resolved infrared (TRIR) spectroscopy in the condensed phase, we have conducted a detailed kinetic and mechanistic investigation of the formation of a Mn-based CO2 reduction electrocatalyst, [Mn((t)Bu2-bpy)(CO)3]2 ((t)Bu2-bpy = 4,4'-(t)Bu2-2,2'-bipyridine), in acetonitrile. The use of TRIR allowed, for the first time, direct observation of all the intermediates involved in this process. Addition of excess [(n)Bu4N][HCO2] to an acetonitrile solution of fac-MnBr((t)Bu2-bpy)(CO)3 results in its quantitative conversion to the Mn-formate complex, fac-Mn(OCHO)((t)Bu2-bpy)(CO)3, which is a precatalyst for the electrocatalytic reduction of CO2.
View Article and Find Full Text PDFIn this article, a new technique we call Beam Action Spectroscopy via Inelastic Scattering (BASIS) is demonstrated. BASIS takes advantage of the sensitivity of rotational state distributions in a supersonic molecular beam to inelastic scattering within the beam. We exploit BASIS to achieve increased sensitivity in two very different types of experiments.
View Article and Find Full Text PDF