Publications by authors named "Bob van Oort"

This scoping review examines environmental impacts related to food production and consumption in Nordic and Baltic countries. The overarching advice to all Nordic and Baltic countries, in line with the current body of scientific literature, is to shift to a more plant-based dietary pattern and avoid food waste. Taking into account current consumption patterns, there is a high potential and necessity to shift food consumption across the countries to minimise its environmental impact.

View Article and Find Full Text PDF

Purpose: Introducing healthy and sustainable diets early in life can promote lifelong healthy dietary patterns with a low environmental impact. Therefore, we aimed to estimate the environmental and nutritional consequences of a dietary change for 2-year-old children in Norway towards healthier dietary patterns.

Methods: Environmental impacts of the current habitual diet among 2-year-olds (n = 1413) were estimated for six impact categories and compared with scenario diets based on the Norwegian food-based dietary guidelines (FBDG) and the EAT-Lancet Commission reference diet.

View Article and Find Full Text PDF

Climate change in the Nordic countries is projected to lead to both wetter and warmer seasons. This, in combination with associated vegetation changes and increased animal migration, increases the potential incidence of tick-borne diseases (TBD) where already occurring, and emergence in new places. At the same time, vegetation and animal management influence tick habitat and transmission risks.

View Article and Find Full Text PDF

Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop.

View Article and Find Full Text PDF

Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function. Drawing on risk allocation theory, we hypothesized that the timing of behavior in ruminants is influenced by the independent effects of light on motivation to feed and perceived risk of predation.

View Article and Find Full Text PDF

In reindeer Rangifer tarandus, a high latitude species, the rhythmic production of melatonin periodically dissipates under natural photoperiods when, in mid-winter, there is near permanent darkness and again, in summer, when there is permanent light. In spring and autumn, as expected, melatonin production reflects the ambient light:dark (LD) cycle. We investigated the expression of circadian mechanisms on blood levels of melatonin in reindeer.

View Article and Find Full Text PDF

Biological rhythms are a result of interplay between endogenous clocks and the ambient light-dark (LD) cycle. Biological timing in resident polar organisms presents a conundrum because these experience distinct daily LD cycles for only a few weeks each year. We measured locomotor activity in reindeer, Rangifer tarandus platyrhynchus (SR, n = 5 and 6) and R.

View Article and Find Full Text PDF

The light/dark cycle of day and night synchronizes an internal 'biological clock' that governs daily rhythms in behaviour, but this form of regulation is denied to polar animals for most of the year. Here we demonstrate that the continuous lighting conditions of summer and of winter at high latitudes cause a loss in daily rhythmic activity in reindeer living far above the Arctic Circle. This seasonal absence of circadian rhythmicity may be a ubiquitous trait among resident polar vertebrates.

View Article and Find Full Text PDF