Publications by authors named "Bob Zimmermann"

BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling.

View Article and Find Full Text PDF

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus.

View Article and Find Full Text PDF

Animals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes.

View Article and Find Full Text PDF

Purpose: In the dose-expansion part of this open-label, phase I study, we explored the efficacy and safety of E7389-LF (liposomal formulation of eribulin) in Japanese patients with advanced gastric cancer.

Patients And Methods: Patients with advanced gastric cancer who had been previously treated with ≥2 lines of chemotherapy received E7389-LF 2.0 mg/m2 every 3 weeks (the previously determined maximum tolerated dose, the primary objective of Study 114).

View Article and Find Full Text PDF

Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates.

View Article and Find Full Text PDF

Coleoid cephalopods (squid, cuttlefish, octopus) have the largest nervous system among invertebrates that together with many lineage-specific morphological traits enables complex behaviors. The genomic basis underlying these innovations remains unknown. Using comparative and functional genomics in the model squid Euprymna scolopes, we reveal the unique genomic, topological, and regulatory organization of cephalopod genomes.

View Article and Find Full Text PDF

Background: Animal genomes are strikingly conserved in terms of local gene order (microsynteny). While some of these microsyntenies have been shown to be coregulated or to form gene regulatory blocks, the diversity of their genomic and regulatory properties across the metazoan tree of life remains largely unknown.

Results: Our comparative analyses of 49 animal genomes reveal that the largest gains of synteny occurred in the last common ancestor of bilaterians and cnidarians and in that of bilaterians.

View Article and Find Full Text PDF

In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes.

View Article and Find Full Text PDF
Article Synopsis
  • * Cnidaria, close relatives to Bilateria, have been studied to compare miRNA conservation, revealing many novel miRNAs but only a few conserved ones in sea anemones and corals.
  • * The research shows that while some miRNA target sites are maintained over 500 million years, the overall conservation of miRNAs and their targets in cnidarians is low, indicating significant evolutionary changes.
View Article and Find Full Text PDF

Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes.

View Article and Find Full Text PDF

Morphogenesis is a shape-building process during development of multicellular organisms. During this process, the establishment and modulation of cell-cell contacts play an important role. Cadherins, the major cell adhesion molecules, form adherens junctions connecting epithelial cells.

View Article and Find Full Text PDF

The level of conservation of ancient metazoan gene order (synteny) is remarkable. Despite this, the functionality of the vast majority of such regions in metazoan genomes remains elusive. Utilizing recently published single-cell expression data from several anciently diverging metazoan species, we reveal the level of correspondence between cell types and genomic synteny, identifying genomic regions conferring ancient cell type identity.

View Article and Find Full Text PDF

Transcription as the key step in gene expression is a highly regulated process. The speed of transcription elongation depends on the underlying gene sequence and varies on a gene by gene basis. The reason for this sequence dependence is not known in detail.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) and associated proteins comprise a conserved pathway for silencing transposons in metazoan germlines. piRNA pathway components are also expressed in multipotent somatic stem cells in various organisms. piRNA functions have been extensively explored in bilaterian model systems, however, comprehensive studies in non-bilaterian phyla remain limited.

View Article and Find Full Text PDF

In search for RNA signals that modulate transcription via direct interaction with RNA polymerase (RNAP), we deep sequenced an E. coli genomic library enriched for RNAP-binding RNAs. Many natural RNAP-binding aptamers, termed RAPs, were mapped to the genome.

View Article and Find Full Text PDF

Advances in high-throughput transcriptome analyses have revealed hundreds of antisense RNAs (asRNAs) for many bacteria, although few have been characterized, and the number of functional asRNAs remains unknown. We have developed a genome-wide high-throughput method to identify functional asRNAs in vivo. Most mechanisms of gene regulation via asRNAs require an RNA-RNA interaction with its target RNA, and we hypothesized that a functional asRNA would be found in a double strand (dsRNA), duplexed with its cognate RNA in a single cell.

View Article and Find Full Text PDF

The discovery of the catalytic properties of RNAs was a milestone for our view of how life emerged and forced us to reformulate many of our dogmas. The urge to grasp the whole spectrum of potential activities of RNA molecules stimulated two decades of fervent research resulting in a deep understanding of RNA-based phenomena. Most ribozymes were discovered by serendipity during the analysis of chemical processes, whereas RNA aptamers were identified through meticulous design and selection even before their discovery in nature.

View Article and Find Full Text PDF

Genomic SELEX is a discovery tool for genomic aptamers, which are genomically encoded functional domains in nucleic acid molecules that recognize and bind specific ligands. When combined with genomic libraries and using RNA-binding proteins as baits, Genomic SELEX used with high-throughput sequencing enables the discovery of genomic RNA aptamers and the identification of RNA-protein interaction networks. Here we describe how to construct and analyze genomic libraries, how to choose baits for selections, how to perform the selection procedure and finally how to analyze the enriched sequences derived from deep sequencing.

View Article and Find Full Text PDF

Background: SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnbd5nuvk5ng18uf06cliijl50rk6h3ua): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once