Publications by authors named "Bob Stevens"

Background: Patients are the most important stakeholders in the care of any disease and have an educational need to learn about their condition and the treatment they should receive. Considering this need for patient-focused materials, we present a directed approach for mucopolysaccharidosis (MPS) VI and MPS IVA, a pair of rare, inherited diseases that affects multiple organs and parts of the body. Independent guidelines on the treatment of these diseases were recently published, providing evidence- and expertise-driven recommendations to optimize patient management.

View Article and Find Full Text PDF

Relative to two-dimensional (2D) culture, three-dimensional (3D) culture of primary neurons has yielded increasingly physiological responses from cells. Electrospun nanofiber scaffolds are frequently used as a 3D biomaterial support for primary neurons in neural tissue engineering, while hydrophobic surfaces typically induce aggregation of cells. Poly-l-lactic acid (PLLA) was electrospun as aligned PLLA nanofiber scaffolds to generate a structure with both qualities.

View Article and Find Full Text PDF

Managed access agreements provide a crucial mechanism whereby real-world data can be collected systematically to reduce uncertainty around available clinical and economic data, whilst providing the opportunity to identify patient sub-populations who are most likely to benefit from a new treatment. This manuscript aims to share learnings from the first managed access agreement, which was initiated following positive conditional approval in 2015 from the National Institute for Health and Care Excellence (NICE) for elosulfase alfa, an enzyme replacement therapy for the treatment of mucopolysaccharidosis type IVA (MPS IVA). This managed access agreement enabled the collection of comprehensive real-world data for patients with MPS IVA, with results demonstrating that patients starting elosulfase alfa treatment showed gains similar to those seen in the pivotal trial for outcomes including endurance, respiratory and cardiac function, pain, quality of life measures and urinary keratan sulfate levels.

View Article and Find Full Text PDF

Current therapeutic strategies for Parkinson's disease (PD) aim to delay progression or replace damaged neurons by restoring the original neuronal structures. The poor regenerative capacity of neural tissue highlights the need for the development of cellular environments to model the pathogenesis of PD. In the current work, we have characterised the growth, survival and response to PD mimetics of human SH-SY5Y neuroblastoma and U-87MG glioblastoma cell lines cultured on polyacrylonitrile (PAN) and Jeffamine® doped polyacrylonitrile (PJ) nano-scaffolds.

View Article and Find Full Text PDF

Introduction: Mucopolysaccharidosis (MPS) IVA or Morquio A syndrome is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of the N-acetylgalactosamine-6-sulfatase (GALNS) enzyme, which impairs lysosomal degradation of keratan sulphate and chondroitin-6-sulphate. The multiple clinical manifestations of MPS IVA present numerous challenges for management and necessitate the need for individualised treatment. Although treatment guidelines are available, the methodology used to develop this guidance has come under increased scrutiny.

View Article and Find Full Text PDF

Introduction: Mucopolysaccharidosis (MPS) VI or Maroteaux-Lamy syndrome (253200) is an autosomal recessive lysosomal storage disorder caused by deficiency in N-acetylgalactosamine-4-sulfatase (arylsulfatase B). The heterogeneity and progressive nature of MPS VI necessitates a multidisciplinary team approach and there is a need for robust guidance to achieve optimal management. This programme was convened to develop evidence-based, expert-agreed recommendations for the general principles of management, routine monitoring requirements and the use of medical and surgical interventions in patients with MPS VI.

View Article and Find Full Text PDF

An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes.

View Article and Find Full Text PDF

Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium.

View Article and Find Full Text PDF

X-ray crystallography is the method of choice to deduce atomic resolution structural information from macromolecules. In recent years, significant investments in structural genomics initiatives have been undertaken to automate all steps in X-ray crystallography from protein expression to structure solution. Robotic systems are widely used to prepare crystallization screens and change samples on synchrotron beamlines for macromolecular crystallography.

View Article and Find Full Text PDF

Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.

View Article and Find Full Text PDF