MicroRNAs (miRNAs) are increasingly recognised as key regulators of the development and progression of many diseases due to their ability to modulate gene expression post-translationally. While this makes them an attractive therapeutic target, clinical application of miRNA therapy remains at an early stage and in part is limited by the lack of effective delivery modalities. Here, we determined the feasibility of delivering miRNA using a new class of plasma-polymerised nanoparticles (PPNs), which we have recently isolated and characterised.
View Article and Find Full Text PDFVirilizer-like mA methyltransferase-associated protein (VIRMA) maintains the stability of the mA writer complex. Although VIRMA is critical for RNA mA deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers.
View Article and Find Full Text PDFThe functionality and durability of implanted biomaterials are often compromised by an exaggerated foreign body reaction (FBR). M1/M2 polarization of macrophages is a critical regulator of scaffold-induced FBR. Macrophage colony-stimulating factor (M-CSF), a hematopoietic growth factor, induces macrophages into an M2-like polarized state, leading to immunoregulation and promoting tissue repair.
View Article and Find Full Text PDFMultifunctional nanocarriers (MNCs) promise to improve therapeutic outcomes by combining multiple classes of molecules into a single nanostructure, enhancing active targeting of therapeutic agents and facilitating new combination therapies. However, nanocarrier platforms currently approved for clinical use can still only carry a single therapeutic agent. The complexity and escalating costs associated with the synthesis of more complex MNCs have been major technological roadblocks in the pathway for clinical translation.
View Article and Find Full Text PDFJACC Basic Transl Sci
February 2019
Cardiovascular disease is an inflammatory disorder that may benefit from appropriate modulation of inflammation. Systemic treatments lower cardiac events but have serious adverse effects. Localized modulation of inflammation in current standard treatments such as bypass grafting may more effectively treat CAD.
View Article and Find Full Text PDFJACC Basic Transl Sci
February 2018
Synthetic vascular grafts for small diameter revascularization are lacking. Clinically available conduits expanded polytetrafluorethylene and Dacron fail acutely due to thrombosis and in the longer term from neointimal hyperplasia. We report the bioengineering of a cell-free, silk-based vascular graft.
View Article and Find Full Text PDFBackground: Induced pluripotent stem-cell derived endothelial cells (iPSC-ECs) can be generated from any somatic cell and their iPSC sources possess unlimited self-renewal. Previous demonstration of their proangiogenic activity makes them a promising cell type for treatment of ischemic injury. As with many other stem cell approaches, the low rate of in-vivo survival has been a major limitation to the efficacy of iPSC-ECs to date.
View Article and Find Full Text PDFCurrent animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery.
View Article and Find Full Text PDFUnlabelled: Biomaterial scaffolds enhancing the engraftment of transplanted bone-marrow mononuclear cells (BM-MNC) have enormous potential for tissue regeneration applications. However, development of appropriate materials is challenging given the precise microenvironments required to support BM-MNC engraftment and function. In this study, we have developed a non-invasive, real-time tracking model of injected BM-MNC engraftment to wounds and implanted biomaterial scaffolds.
View Article and Find Full Text PDF