Malignant tumors are often associated with an immunosuppressive tumor microenvironment (TME), rendering most of them resistant to standard-of-care immune checkpoint inhibitors (CPIs). Signal transducer and activator of transcription 3 (STAT3), a ubiquitously expressed transcription factor, has well-defined immunosuppressive functions in several leukocyte populations within the TME. Since the STAT3 protein has been challenging to target using conventional pharmaceutical modalities, we investigated the feasibility of applying systemically delivered RNA interference (RNAi) agents to silence its mRNA directly in tumor-associated immune cells.
View Article and Find Full Text PDFBackground & Aims: RG6346 is an N-acetyl-D-galactosamine (GalNAc)-conjugated, double-stranded RNA interference agent targeting the HBV genome S-region. We investigated the safety, tolerability, pharmacokinetics, and pharmacodynamics of RG6346 in healthy volunteers and patients with chronic HBV infection (CHB).
Methods: This first-in-human, adaptive, randomized, double-blinded, phase I study recruited three groups of participants: Group A, 30 healthy volunteers received single-dose RG6346 at 0.
Br J Clin Pharmacol
June 2022
Wnt/β-catenin signaling mediates cancer immune evasion and resistance to immune checkpoint therapy, in part by blocking cytokines that trigger immune cell recruitment. Inhibition of β-catenin may be an effective strategy for increasing the low response rate to these effective medicines in numerous cancer populations. DCR-BCAT is a nanoparticle drug product containing a chemically optimized RNAi trigger targeting CTNNB1, the gene that encodes β-catenin.
View Article and Find Full Text PDFPrimary hyperoxalurias (PHs) are autosomal recessive disorders caused by the overproduction of oxalate leading to calcium oxalate precipitation in the kidney and eventually to end-stage renal disease. One promising strategy to treat PHs is to reduce the hepatic production of oxalate through substrate reduction therapy by inhibiting liver-specific glycolate oxidase (GO), which controls the conversion of glycolate to glyoxylate, the proposed main precursor to oxalate. Alternatively, diminishing the amount of hepatic lactate dehydrogenase (LDH) expression, the proposed key enzyme responsible for converting glyoxylate to oxalate, should directly prevent the accumulation of oxalate in PH patients.
View Article and Find Full Text PDFGlycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III.
View Article and Find Full Text PDFColorectal carcinomas harbor well-defined genetic abnormalities, including aberrant activation of Wnt/β-catenin and MAPK pathways, often simultaneously. Although the MAPK pathway can be targeted using potent small-molecule drugs, including BRAF and MEK inhibitors, β-catenin inhibition has been historically challenging. RNAi approaches have advanced to the stage of clinical viability and are especially well suited for transcriptional modulators, such as β-catenin.
View Article and Find Full Text PDFThe Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level and therefore can be applied to previously undruggable targets.
View Article and Find Full Text PDFPrimary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure.
View Article and Find Full Text PDFDespite progress in identifying molecular drivers of cancer, it has been difficult to translate this knowledge into new therapies, because many of the causal proteins cannot be inhibited by conventional small molecule therapeutics. RNA interference (RNAi), which uses small RNAs to inhibit gene expression, provides a promising alternative to reach traditionally undruggable protein targets by shutting off their expression at the messenger RNA (mRNA) level. Challenges for realizing the potential of RNAi have included identifying the appropriate genes to target and achieving sufficient knockdown in tumors.
View Article and Find Full Text PDFBackground: Bcl-2 is believed to contribute to melanoma chemoresistance. However, expression of Bcl-2 proteins may be different among melanomas. Thus correlations among expression of Bcl-2-related proteins and in vivo melanoma progression, and resistance to combination therapies, was investigated.
View Article and Find Full Text PDFA method using multi-mode solid-phase extraction and ultra-high-performance liquid chromatography (UHPLC)-electrospray mass spectrometry was developed to quantify Dicer-substrate small interfering RNA (DsiRNA) directed against the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene transcript in mouse liver tissue. The oligonucleotides were separated into sense and antisense strands using a UHPLC C(18) column with mobile phases containing 1,1,1,3,3,3-hexafluoro-2-propanol in both water (mobile phase A) and methanol (mobile phase B) with triethylamine as the ion pairing agent at a column temperature of 65°C. The lower limits of detection for the sense and antisense strands were ~1 ng/mg.
View Article and Find Full Text PDFBackground: Oblimersen, an ODN targeting BCL-2 RNA, has been shown to be effective in reducing BCL-2 expression in vitro and in in vivo models engineered to overexpress BCL-2. The present study evaluated the efficacy of combining BCL-2 ODN and radiation in small-cell lung cancers (SCLC) cell lines.
Materials And Methods: The in vitro effect was determined using short term (cell viability) and long term (clonogenic) assays.
Objectives: Our group previously demonstrated that expression of the oncogene, Bcl-2, was associated with radiation resistance. The aim of the present study was to determine whether Bcl-2 expression in radiation-resistant tumors was associated with expression of carbonic anhydrase IX (CAIX), vascular endothelial growth factor (VEGF), and pAkt and whether downregulation of Bcl-2 could modulate the expression of CAIX, VEGF, and pAkt.
Methods: Two prostate cancer cell lines, PC-3-Bcl-2 and PC-3-Neo, were injected into the subcutaneous flanks of 192 athymic male nude mice; 96 received PC-3 Bcl-2 and 96 PC-3-Neo.
Int J Radiat Oncol Biol Phys
July 2007
Purpose: To investigate whether irradiation before antisense Bcl-2 oligodeoxynucleotide (ODN) administration enhances tissue uptake, and whether periodic dosing enhances cellular uptake of fluorescently labeled ODN relative to constant dosing.
Methods And Materials: PC-3-Bcl-2 cells (prostate cancer cell line engineered to overexpress Bcl-2) were subjected to increasing doses of irradiation (0-10 Gy) with or without increasing concentrations of fluorescently labeled antisense Bcl-2 ODN (G4243). The fluorescent signal intensity was quantified as the total grain area with commercial software.
Purpose: Advanced melanoma resists all current therapies, and metastases in the liver are particularly problematic. Prevalent resistance factors include elevated glutathione (GSH) and increased expression of bcl-2 in melanoma cells. GSH has pleiotropic effects promoting cell growth and broad resistance to therapy, whereas Bcl-2 inhibits the activation of apoptosis and contributes to elevation of GSH.
View Article and Find Full Text PDFExpression of the proto-oncogene Bcl-2 is associated with tumor progression. Bcl-2's broad expression in tumors, coupled with its role in resistance to chemotherapy and radiation therapy-induced apoptosis, makes it a rational target for anticancer therapy. Antisense Bcl-2 oligodeoxynucleotide (ODN) reagents have been shown to be effective in reducing Bcl-2 expression in a number of systems.
View Article and Find Full Text PDFG3139 (Genasense), an 18mer phosphorothioate antisense oligonucleotide targeted to the initiation codon region of the Bcl-2 messenger RNA (mRNA), downregulates Bcl-2 protein and mRNA expression in many cell lines. However, both the in vitro and in vivo mechanisms of action of G3139 are still uncertain. The isosequential L-deoxyribose enantiomer L-G3139, which does not downregulate Bcl-2 expression, was synthesized to study the role of the Bcl-2 protein in melanoma cells.
View Article and Find Full Text PDFPurpose: Bcl-2 is an apoptotic protein that is highly expressed in advanced melanoma. Several strategies have been employed to target the expression of this protein, including G3139, an 18-mer phosphorothioate oligodeoxyribonucleotide targeted to the initiation region of the Bcl-2 mRNA. This compound has recently completed phase III global clinical evaluation, but the function of Bcl-2 as a target in melanoma has not been completely clarified.
View Article and Find Full Text PDF