Publications by authors named "Bob C Hamans"

Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tumor pathobiology.

View Article and Find Full Text PDF

Purpose: To study cancer associated with abnormal metabolism of phospholipids, of which several have been proposed as biomarkers for malignancy or to monitor response to anticancer therapy. We explored 3D (31) P magnetic resonance spectroscopic imaging (MRSI) at high magnetic field for in vivo assessment of individual phospholipids in two patient-derived breast cancer xenografts representing good and poor prognosis (luminal- and basal-like tumors).

Materials And Methods: Metabolic profiles from luminal-like and basal-like xenograft tumors were obtained in vivo using 3D (31) P MRSI at 11.

View Article and Find Full Text PDF

This study describes a technique for fast imaging of x-nuclei metabolites. Due to increased sensitivity and larger chemical shift dispersion at high magnetic fields, images of multiple metabolites can be obtained simultaneously by selective excitation of their resonances with a multifrequency selective radiofrequency pulse at any desired flip angle. This aim is achieved by combining a three-dimensional gradient echo imaging sequence with a Shinnar-LeRoux optimized excitation pulse.

View Article and Find Full Text PDF

A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan.

View Article and Find Full Text PDF

Currently available compounds that interfere with VEGF-A signalling effectively inhibit angiogenesis in gliomas, but influence diffuse infiltrative growth to a much lesser extent. Development of a functional tumour vascular bed not only involves VEGF-A but also requires platelet-derived growth factor receptor-β (PDGFRβ), which induces maturation of tumour blood vessels. Therefore, we tested whether combined inhibition of VEGFR and PDGFRβ increases therapeutic benefit in the orthotopic glioma xenograft models E98 and E473, both displaying the diffuse infiltrative growth that is characteristically observed in most human gliomas.

View Article and Find Full Text PDF

Purpose: To develop a transgenic mouse model of glioma that can be conveniently used for testing therapy intervention strategies. High-grade glioma is a devastating and uniformly fatal disease for which better therapy is urgently needed. Typical for high-grade glioma is that glioma cells infiltrate extensively into surrounding pivotal brain structures, thereby rendering current treatments largely ineffective.

View Article and Find Full Text PDF

Susceptibility weighted imaging (SWI) has been introduced as a novel approach to visualize the venous vasculature in the human brain. With SWI, small veins in the brain are depicted based on the susceptibility difference between deoxyhaemoglobin in the veins and surrounding tissue, which is further enhanced by the use of MR phase information. In this study we applied SWI in the mouse brain using an exogenous iron-based blood-pool contrast agent, with the aims of further enhancing the susceptibility effect and allowing the visualization of individual veins and arteries.

View Article and Find Full Text PDF