Publications by authors named "Boaz Shapira"

Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g.

View Article and Find Full Text PDF

Long range interactions between nuclear spins and paramagnetic ions can serve as a sensitive monitor of internal motion of various parts of proteins, including functional loops and separate domains. In the case of interdomain motion, the interactions between the ion and NMR-observable nuclei are modulated in direction and magnitude mainly by a combination of overall and interdomain motions. The effects on observable parameters such as paramagnetic relaxation enhancement (PRE) and pseudocontact shift (PCS) can, in principle, be used to characterize motion.

View Article and Find Full Text PDF

Scan and deliver: By combining imaging-based spectral/spatial 2D radiofrequency manipulations (see scheme, left) with Hadamard-weighting principles, 2D NMR spectra can be retrieved within a single scan (right). This approach can give homo- or heteronuclear correlations with an enhanced sensitivity over conventional ultrafast 2D NMR spectroscopy.

View Article and Find Full Text PDF

2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

View Article and Find Full Text PDF

We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions.

View Article and Find Full Text PDF

Single-scan multidimensional spectroscopy utilizes spatial dimensions for encoding the indirect-domain internal spin interactions. Various strategies have been hitherto demonstrated for fulfilling the encoding needs underlying this methodology; in analogy with their time-domain counterparts all of them have in common the fact that they proceed monotonically-starting at one end of the sample and concluding at the other. The present manuscript discusses another possibility that arises for the case of amplitude-modulated ultrafast nD NMR, whereby the spatial encoding progresses from both ends of the sample simultaneously towards the center.

View Article and Find Full Text PDF

Ultrafast 2D NMR replaces the time-domain parametrization usually employed to monitor the indirect-domain spin evolution, with an equivalent encoding along a spatial geometry. When coupled to a gradient-assisted decoding during the acquisition, this enables the collection of complete 2D spectra within a single transient. We have presented elsewhere two strategies for carrying out the spatial encoding underlying ultrafast NMR: a discrete excitation protocol capable of imparting a phase-modulated encoding of the interactions, and a continuous protocol yielding amplitude-modulated signals.

View Article and Find Full Text PDF

A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found that when dealing with 2D NMR experiments involving a t1 amplitude-modulation of the spin evolution, such continuous encoding scheme presents a number of advantages over alternatives employing discrete excitation pulses.

View Article and Find Full Text PDF

A recently proposed protocol enables the acquisition of two-dimensional nuclear magnetic resonance (2D NMR) spectra within a single scan. A promising application opened up by this new data acquisition mode concerns its combination with active nuclear polarization methods, whereby spectroscopy is carried out on analytes whose spin magnetizations have been significantly enhanced over their Boltzmann thermal values. The present paper explores the potential of such combination, with the acquisition of peptide and protein 2D NMR 1H correlation spectra recorded after the samples had been subject to laser-driven chemically induced dynamic nuclear polarization (CIDNP).

View Article and Find Full Text PDF

A scheme enabling the acquisition of high-resolution nuclear magnetic resonance (NMR) spectra within inhomogeneous magnetic fields is introduced and exemplified. The scheme is based on the spatial encoding protocol recently introduced for collecting multidimensional NMR data within a single scan, which retrieves spectral information via interference phenomena between spin packets located at distinct positions within the sample. This in turn enables compensating for field inhomogeneities over the sample as a whole by shifting the phases of the radio-frequency pulses involved in the spatial encoding, rather than by demanding an extreme uniformity in the employed magnetic field.

View Article and Find Full Text PDF

Formation of hydrophobic contacts across a newly formed interface is energetically favorable. Based on this observation we developed a geometric-hydrophobic docking algorithm that estimates quantitatively the hydrophobic complementarity at protein-protein interfaces. Each molecule to be docked is represented as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the hydropathy of the surface in the imaginary part.

View Article and Find Full Text PDF

We have recently proposed and demonstrated an approach that enables the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up by this new accelerated form of data acquisition concerns the possibility of monitoring in real time the chemical nature of analytes subject to a continuous flow. The present paper illustrates such potential, with the real-time acquisition of a series of 2D 1H NMR spectra arising from a mixture of compounds subject to a continuous liquid chromatography (LC) separation.

View Article and Find Full Text PDF

We have recently proposed and demonstrated an approach that enables the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan. The approach is based on spatially encoding the spins' evolution along the indirect domain with the aid of a magnetic field gradient, and subsequently decoding this information numerous times over the course of the signal acquisition while spins are subject to a train of gradient echoes. The present paper discusses further considerations pertaining the 2D line shapes arising from this new way of collecting NMR data.

View Article and Find Full Text PDF

We have recently demonstrated that magnetic field gradients in combination with frequency selective pulses, can be employed to collect a complete multi-dimensional NMR spectrum within a single scan. Following similar guidelines, field gradients could also be exploited to parallelize other types of NMR experiments where the final results arise from the collection and analysis of a series of time-incremented spectra. The present Communication exemplifies this concept by showing how a combination of gradients can be employed to monitor within a single continuous acquisition, a slow dynamic process which is in turn followed by systematic increments in the duration of a magnetization transfer time.

View Article and Find Full Text PDF

We submitted predictions for all seven targets in the CAPRI experiment. For four targets, our submitted models included acceptable, medium accuracy predictions of the structures of the complexes, and for a fifth target we identified the location of the binding site of one of the molecules. We used a weighted-geometric docking algorithm in which contacts involving specified parts of the surfaces of either one or both molecules were up-weighted or down-weighted.

View Article and Find Full Text PDF