The 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) activates glucocorticoids (GC) by reversibly converting 11-keto-GC to 11-hydroxy-GC, while 11betaHSD2 and 11betaHSD3 only catalyzes the reverse reaction. Recently, rat and human 11betaHSDs were shown to interconvert 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (7alpha- or 7beta-OH-DHEA) with 7-oxo-DHEA. We report that pig kidney microsomes (PKMc) and nuclei (PKN) oxidize 7alpha-OH-DHEA to 7-oxo-DHEA at higher rates with NAD+, than with NADP+.
View Article and Find Full Text PDFCurrent research on dehydroepiandrosterone (DHEA) is limited due to lack of radiolabeled metabolites. We utilized pig liver microsomal (PLM) fractions to prepare [(3)H]-labeled 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA substrates from 50 microM [1,2,6,7-(3)H]DHEA (specific radioactivity 60-80 mCi/mmol). The metabolites were separated by preparative thin-layer chromatography (TLC) using ethyl acetate:hexane:glacial acetic acid (18:8:3 v:v:v) as the mobile phase, extracted with ethyl acetate, and dried under a stream of nitrogen.
View Article and Find Full Text PDFThe cytochrome p450-dependent formation and subsequent interconversion of dehydroepiandrosterone (DHEA) metabolites 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA was observed in human, pig, and rat liver microsomal fractions. Rat liver mitochondria and nuclei also converted DHEA to 7 alpha-OH-DHEA and 7-oxo-DHEA, but at a lower rate. With NADP(+), and less so with NAD(+), rat, pig, and human liver microsomes and rat liver mitochondria and nuclei converted 7 alpha-OH-DHEA to 7-oxo-DHEA.
View Article and Find Full Text PDF