Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing "effector" proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here, we define the host component of the molecular arms race as an evolutionarily conserved polar "hot spot" on the PH domain of ELMO1 (Engulfment and Cell Motility protein 1), which is targeted by diverse WxxxE effectors.
View Article and Find Full Text PDFMacrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing effector proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here we define the host component of the molecular arms race as an evolutionarily conserved polar hotspot on the PH-domain of ELMO1 (Engulfment and Cell Motility1), which is targeted by diverse WxxxE-effectors.
View Article and Find Full Text PDFPrecarious housing conditions are on the rise in many developing economies, which has resulted in increasing segmentation between population groups with different socioeconomic backgrounds, and in differentiated access to life chances. With the onset of the COVID-19 pandemic, and its subsequent lockdowns, the relation between learning and housing conditions has become crucial for understanding the adult student's learning experience and well-being. However, knowledge about this relation is limited.
View Article and Find Full Text PDFThe kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knockdown of CG17282 produced behavioral arrhythmicity and long periods and high levels of hypophosphorylated nuclear PERIOD and phosphorylated DOUBLETIME.
View Article and Find Full Text PDFThere is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands.
View Article and Find Full Text PDF