Immunotherapy has emerged as a mainstay in cancer therapy, yet its efficacy is constrained by the risk of immune-related adverse events. In this study, we present a nanoparticle-based delivery system that enhances the therapeutic efficacy of immunomodulatory ligands while concurrently limiting systemic toxicity. We demonstrate that extracellular vesicles (EVs), lipid bilayer enclosed particles released by cells, can be efficiently engineered via inverse electron demand Diels-Alder (iEDDA)-mediated conjugation to display multiple immunomodulatory ligands on their surface.
View Article and Find Full Text PDFExtracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes.
View Article and Find Full Text PDFCancer cachexia is a multifactorial syndrome characterized by a significant loss of skeletal muscle, which negatively affects the quality of life. Inhibition of myostatin (Mstn), a negative regulator of skeletal muscle growth and differentiation, has been proven to preserve muscle mass in muscle atrophy diseases, including cachexia. However, myostatin inhibitors have repeatedly failed clinical trials because of modest therapeutic effects and side effects due to the poor efficiency and toxicity of existing delivery methods.
View Article and Find Full Text PDFRed blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases.
View Article and Find Full Text PDFThe advent of novel therapeutics in recent years has urged the need for a safe, non-immunogenic drug delivery vector capable of delivering therapeutic payloads specifically to diseased cells, thereby increasing therapeutic efficacy and reducing side effects. Extracellular vesicles (EVs) have garnered attention in recent years as a potentially ideal vector for drug delivery, taking into account their intrinsic ability to transfer bioactive cargo to recipient cells and their biocompatible nature. However, natural EVs are limited in their therapeutic potential and many challenges need to be overcome before engineered EVs satisfy the levels of efficiency, stability, safety and biocompatibility required for therapeutic use.
View Article and Find Full Text PDFThe RIG-I pathway can be activated by RNA containing 5' triphosphate, leading to type I interferon release and immune activation. Hence, RIG-I agonists have been used to induce immune responses against cancer as potential immunotherapy. However, delivery of 5' triphosphorylated RNA molecules as RIG-I agonists to tumour cells in vivo is challenging due to the susceptibility of these molecules to degradation.
View Article and Find Full Text PDFThe greenhouse effect of SF increasingly limits its application in various gas insulated equipment. CFO combines the advantages of insulation resistance, safety and environmental protection. When mixed with buffer gas, CFO is considered to have potential application prospects in medium and low voltage equipment.
View Article and Find Full Text PDFDysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12.
View Article and Find Full Text PDFNatural extracellular vesicles (EVs) are ideal drug carriers due to their remarkable biocompatibility. Their delivery specificity can be achieved by the conjugation of targeting ligands. However, existing methods to engineer target-specific EVs are tedious or inefficient, having to compromise between harsh chemical treatments and transient interactions.
View Article and Find Full Text PDFCancer is a disease that evolves continuously with unpredictable outcomes. Although conventional chemotherapy can display significant antitumor effects, the lack of specificity and poor bioavailability remain major concerns in cancer therapy. Moreover, with the advent of novel anti-cancer gene therapies, there is an urgent need for drug delivery vectors capable of bypassing cellular barriers and efficiently transferring therapeutic cargo to recipient cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies.
View Article and Find Full Text PDFThe present study was conducted to investigate the effect of cold storage time on apoptosis of cumulus cells (CCs) from porcine ovaries, and to compare the sensitivity of four apoptosis-detection methods. Porcine ovaries were stored in physiological saline solution at 4°C for 0, 7, 24 and 48 hr, and then cumulus cells or granulosa cells (GCs) in antral follicles were retrieved to detect cell apoptosis. Cumulus cells isolated from stored ovaries for 24 hr presented obvious apoptosis using terminal deoxynucleotidyl transferase (TdT)-mediated d-UTP nick end-labeling (TUNEL) assay.
View Article and Find Full Text PDFA substantial number of mouse genes, about 25%, are embryonically lethal when knocked out. Using current genetic tools, such as the CRISPR-Cas9 system, it is difficult-or even impossible-to produce viable mice with heritable embryonically lethal mutations. Here, we establish a one-step method for microinjection of CRISPR reagents into one blastomere of two-cell embryos to generate viable chimeric founder mice with a heritable embryonically lethal mutation, of either Virma or Dpm1.
View Article and Find Full Text PDFTumour cells release large quantities of extracellular vesicles (EVs) to mediate their interactions with other cells in the tumour microenvironment. To identify host cells that naturally take up EVs from tumour cells, we created breast cancer cell lines secreting fluorescent EVs. These fluorescent EVs are taken up most robustly by fibroblasts within the tumour microenvironment.
View Article and Find Full Text PDFHere we identify hundreds of RNA G-quadruplex (rG4) candidates in microRNAs (miRNAs), characterize the miRNA structure and miRNA-mRNA interactions on several mammalian-conserved miRNAs, and reveal the formation of rG4s in miRNAs. Notably, we study the effect of these rG4s in cells and uncover the role of rG4s in miRNA-mediated post-transcriptional regulation.
View Article and Find Full Text PDFMost of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer.
View Article and Find Full Text PDFProlonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
July 2016
Objective To investigate the synergistic anti-breast cancer effect of Toll-like receptor 7 agonist T7-ethacrynic acid conjugate (T7-EA) in combination with receptor-tyrosine-kinase-like orphan receptor 1 (ROR1). Methods ROR1 cytotoxic T lymphocyte (CTL) epitope was predicted using Syfpeithi online software. Mouse spleen lymphocytes and bone marrow dendritic cells (DCs) were separately stimulated with 4 μmol/L T7-EA and 4 μmol/L ROR1 alone or in combination.
View Article and Find Full Text PDFImmunotherapy is emerging as a powerful and active tumor-specific approach against cancer via triggering the immune system. Toll-like receptors (TLRs) are fundamental elements of the immune system, which facilitate our understanding of the innate and adaptive immune pathways. TLR agonists used as single agents can effectively eradicate tumors due to their potent stimulation of innate and adaptive immunity.
View Article and Find Full Text PDFAim: To investigate ANXA5 overexpression on in vitro and in vivo malignancies of murine Hca-P cells.
Materials & Methods: Hca-P with low lymph node metastasis (LNM) potential was used as cell model. TEM, CCK-8 and Boyden transwell assays were performed for in vitro Hca-P behaviors.
Annexin A5 (Anxa5) promotes pancreatic adenocarcinoma, sarcoma, tumorigenesis and progression of breast cancer and prostate cancer stem cells. It is involved with metastasis, invasion and development of squamous cell carcinoma, and facilitates nodal progression of bladder cancer and angiogenesis and progression of glioma. Anxa5 de-regulation is associated with drug resistance in nasopharyngeal carcinoma and gastric cancer.
View Article and Find Full Text PDFThe ventromedial hypothalamic nucleus (VMH) regulates a variety of homeostatic processes including female sexual behavior and reproduction. In the current study, we assessed the roles of steroidogenic factor 1 (SF-1) on reproductive function in the VMH using central nervous system-specific SF-1 knockout (SF-1 KO(nCre;F/-)) mice. Here we show that SF-1 KO(nCre;F/-) females exhibited marked impairment in female reproduction.
View Article and Find Full Text PDF