Publications by authors named "BoSheng Li"

Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.

View Article and Find Full Text PDF

Background: Incorporating backfill cohorts in phase I oncology trials is a recently developed strategy for dose optimization. However, the efficacy assessment window is long in general, causing a lag in identifying ineffective doses and more patients being backfilled to those doses. There is necessity to investigate how to use patient-reported outcomes (PRO) to determine doses for backfill cohorts.

View Article and Find Full Text PDF

Propagation through cuttings is a well-established and effective technique for plant multiplication. This study explores the regeneration of poplar roots using spatial transcriptomics to map a detailed developmental trajectory. Mapping of the time-series transcriptome data revealed notable alterations in gene expression during root development, particularly in the activation of cytokinin-responsive genes.

View Article and Find Full Text PDF

The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.

View Article and Find Full Text PDF

Peat moss (Sphagnum) is a non-vascular higher plant with unique xylem-like hyaline (H) cells that are accompanied by photosynthetic chlorophyllous cells. These cellular structures play crucial roles in water storage and carbon sequestration. However, it is largely unknown how peat moss develops the H cells.

View Article and Find Full Text PDF

Objective: In Guangdong Province, hepatitis C virus (HCV) had been found to confer resistance to direct-acting antivirals (DAAs). There were few studies of HCV subtypes and resistance-associated substitutions (RASs) of HCV in different high-risk populations. In this study, we aimed to determine the subtype distribution and the RASs in high-risk population groups, including drug users (DU), men who have sex with men (MSM), female sex workers (FSW), and male patients with sexually transmitted diseases (STD) in Guangdong Province (a highly developed province with a large population).

View Article and Find Full Text PDF

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level.

View Article and Find Full Text PDF
Article Synopsis
  • - Generated a comprehensive genetic assembly for 27 distinct
  • Citrullus
  • genotypes, expanding the previous reference genome by adding significant DNA and thousands of genes, showcasing enhanced genetic diversity.
  • - Conducted comparative analysis revealing gene variants and structural changes, contributing to the understanding of watermelon evolution and traits like sweetness and bitterness, while also impacting disease resistance.
  • - Successfully integrated disease-resistant genes from wild species (
  • Citrullus amarus
  • and
  • Citrullus mucosospermus
  • ) into cultivated watermelon (
  • Citrullus lanatus
  • ), providing new insights into watermelon genetics and potential for genetic improvement.
View Article and Find Full Text PDF

Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize.

View Article and Find Full Text PDF

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C.

View Article and Find Full Text PDF

Leaf angle (LA) is a crucial factor that affects planting density and yield in maize. However, the regulatory mechanisms underlying LA formation remain largely unknown. In this study, we performed a comparative histological analysis of the ligular region across various maize inbred lines and revealed that LA is significantly influenced by a two-step regulatory process involving initial cell elongation followed by subsequent lignification in the ligular adaxial sclerenchyma cells (SCs).

View Article and Find Full Text PDF

Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition.

View Article and Find Full Text PDF

Indirect mechanisms of cancer immunotherapies result in delayed treatment effects that vary among patients. Consequently, the use of the log-rank test in trial design and analysis can lead to significant power loss and pose additional challenges for interim decisions in adaptive designs. In this paper, we describe patients' survival using a piecewise proportional hazard model with random lag time and propose an adaptive promising zone design for cancer immunotherapy with heterogeneous delayed effects.

View Article and Find Full Text PDF
Article Synopsis
  • - Light is crucial for plant growth and development, particularly during seedling de-etiolation, which triggers extensive reprogramming of gene expression in plants.
  • - Researchers created detailed single-cell transcriptional profiles for different stages of Arabidopsis thaliana seedlings, identifying 48 distinct cell types and their developmental pathways influenced by light.
  • - The study showed how phytochrome-interacting factors (PIFs) regulate gene expression in specific cell types, enhancing our understanding of light's role in cell fate determination and plant development.
View Article and Find Full Text PDF

Background: Vitamin D deficiency (VDD) is a public health problem. The variation in vitamin D status across regions and populations remains unclear, and there is a lack of consensus regarding the screening for VDD in individuals.

Methods: Children who visited the hospital from January 2019 to December 2020 were included in this study.

View Article and Find Full Text PDF

The delayed treatment effect is a common feature of immunotherapy, characterized by a gradual onset of action ranging from no effect to full effect. In this study, we propose a generalized delayed treatment effect function to depict the delayed effective process precisely and flexibly. To reduce potential power loss caused by the delayed treatment effect in a group sequential trial, we employ the maximin efficiency robust test, which enhances power robustness across a range of possible delays.

View Article and Find Full Text PDF
Article Synopsis
  • Callus is a mass of reprogrammed cells in plants that aids in regeneration and gene transformation, particularly in crops like tomatoes.
  • This study investigates the spatial transcriptome of tomato callus during shoot regeneration, revealing various specialized cell types that contribute to this process.
  • Key discoveries include the identification of chlorenchyma cells, which enhance shoot primordia formation and shoot regeneration, with light playing a vital role in this developmental process.
View Article and Find Full Text PDF

In this article, we propose DeepTree, a novel method for modeling trees based on learning developmental rules for branching structures instead of manually defining them. We call our deep neural model "situated latent" because its behavior is determined by the intrinsic state -encoded as a latent space of a deep neural model- and by the extrinsic (environmental) data that is "situated" as the location in the 3D space and on the tree structure. We use a neural network pipeline to train a situated latent space that allows us to locally predict branch growth only based on a single node in the branch graph of a tree model.

View Article and Find Full Text PDF

Motivation: Direct RNA-seq (dRNA-seq) using Oxford Nanopore Technology (ONT) has revolutionized transcript mapping by offering enhanced precision due to its long-read length. Unlike traditional techniques, dRNA-seq eliminates the need for PCR amplification, reducing the impact of GC bias, and preserving valuable base physical information, such as RNA modification and poly(A) length estimation. However, the rapid advancement of ONT devices has set higher standards for analytical software, resulting in potential challenges of software incompatibility and reduced efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates vitamin D levels in healthy infants and children in Shanghai over a two-year period, focusing on those aged 0-11 years.
  • Out of 6164 children examined, a significant percentage showed low vitamin D levels, with 10% having levels below 20 ng/mL and nearly 44% below 30 ng/mL.
  • Results indicate that low vitamin D status varies by age and season but not by gender, highlighting the need for regular vitamin D assessments for at-risk groups.
View Article and Find Full Text PDF

Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated.

View Article and Find Full Text PDF

Recently, the US Food and Drug Administration Oncology Center of Excellence initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. The agency pointed out that the current paradigm for dose selection-based on the maximum tolerated dose (MTD)-is not sufficient for molecularly targeted therapies and immunotherapies, for which efficacy may not increase after the dose reaches a certain level. In these cases, it is more appropriate to identify the optimal biological dose (OBD) that optimizes the risk-benefit tradeoff of the drug.

View Article and Find Full Text PDF

Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process.

View Article and Find Full Text PDF

Although accumulating evidence has highlighted the molecular mechanisms by which hTERT promotes tumour cell invasion and metastasis, the molecular mechanisms of the properties enabling hTERT to contribute to invasion and metastasis have not been clearly illustrated. Here, we report that hTERT promotes gastric cancer invasion and metastasis by recruiting p50 to synergistically inhibit PLEKHA7 expression. We observed that the expression of PLEKHA7 in gastric cancer was significantly negatively associated with the TNM stage and lymphatic metastasis and that decreased PLEKHA7 expression dramatically increased invasion and metastasis in gastric cancer cells.

View Article and Find Full Text PDF