When discriminating herbal medicines with pattern recognition based on chromatographic fingerprints, typically, the majority of variables/data points contain no discrimination information. In this paper, chemometric approaches concerning forward selection and key set factor analysis using principal component analysis (PCA), unweighted and weighted methods based on the inner- and outer-variances, Fisher coefficient from the between- and within-class variations were investigated to extract representative variables. The number of variables retained was determined based on the cumulative variance percent of principal components, the ratio of observations to variables and the factor indicative function (IND).
View Article and Find Full Text PDF