Classification measures play essential roles in the assessment and construction of classifiers. Hence, determining how to prevent these measures from being affected by individual observations has become an important problem. In this paper, we propose several indexes based on the influence function and the concept of local influence to identify influential observations that affect the estimate of the area under the receiver operating characteristic curve (AUC), an important and commonly used measure.
View Article and Find Full Text PDFPharm Stat
December 2014
Crossover designs are commonly used in bioequivalence studies. However, the results can be affected by some outlying observations, which may lead to the wrong decision on bioequivalence. Therefore, it is essential to investigate the influence of aberrant observations.
View Article and Find Full Text PDF